IEEE-488

General Purpose
Instrumentation Bus
Manual

TITLE: TEEE-488 GEMERAL PURPOSE

ALTHOR s CAaRISTY TS8My Ot 2

CODE R Q084814 7 atal 7

[N v D =
Jeewatd S

THS TR
1 B E

b

e or

IEEE-488

General Purpose
Instrumentation Bus
Manual

Anthony J. Caristi

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto

COPYRIGHT © 1989 BY ACADEMIC PRESS, INC.
All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system, without permission in writing

from the publisher.

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road. London NW1 7DX

w
w
]

’1

LIBRARY OF CONGRE

ISBN 0-12-159820-9 (alk. paper)

PRINTED IN THE UNITED STATES OF AMERICA
89 90 91 92 9 8 76 5 4 3 21

Dedication

To my wife, Betty, who has graciously
tolerated the long hours spent in the
preparation of this manuscript.

Contents

Preface xiii
1 The General Purpose Instrumentation Bus 1
Introduction
History
IEEE-488.2

Major Interface Systems

Description of the IEEE-488 (GPIB) Interface
System

GPIB Addressing

GPIB Communications

Handshake

2 IEEE-488 Protocol 19
Device-dependent Message Units
Interface Functions
Interface Management Lines
Universal Commands
Addressed Commands
Polling
Message Termination

3 The IEEE-488.2 Standard 31
Overview
Interface Capabilities
Syntax and Data Formats
Device Message Protocols

vii

viii |EEE-488 GPIB Manual

Common Command Set
Status Reporting
Parallel Poll

4 GPIB Hardware 49
PC to GPIB Interfaces
IEEE-488 Modems
Expanders and Extenders
GPIB-to-RS-232 Converters
Parallel IEEE-488 Converter
Data Buffers
IEEE-488-to-Digital I/O Interface

5 GPIB Devices and Functions 61
Digital Voltmeters
Oscilloscopes
Signal Generators
Universal Counters
Programmable DC Power Supplies
Programmable AC Power Supplies
Relay Switchers
Interface Functions and Subsets
Programming Requirements
Communications Format

o
w

6 Programming the IEEE-488 GP1B
Overview
Hewlett-Packard Basic
HPL (Hewieu-Packard Language)
4041 BASIC (Tektronix)
Fluke 1722A Controller

Programming Syntax of the 1722A

Program Comparisons Between HP,
Tektronix, and Fluke

Command Structures

Controller Time-out Period

Service Request Interrupts

Primary Address

Secondary Address

TEKTRONIX Codes and Formats
Compatibility Between GPIB Instruments
The Human Interface

Device-Dependent Message Structure
Conventions

Status Bytes

Queries

Compatibilities

Hewlett-Packard PC Interface Bus
Overview

System Objectives

System Description

Paralle! Communications Channel

Serial Communications Channel

The Custom Bus Interface IC

Using the PCIB

The Hewlett-Packard Interface Loop
Introduction

HP-IL Overview

HP-IL Features

HP-IL Message Structure

Interface Functions

Index

ix

105

119

135

x |EEE-488 GPIB Manual
Command Group Messages
HP-IL Message Table
10 Increasing GPIB System Performance
Overview
Instrument Setup Time
Data Acquisition
Data Transfer
Data Processing
The Human Interface
11 Case Histories and Applications of the
IEEE-488 Bus System
Airspeed Capsule Displacement
Servo Altimeter Rate Measurement
Aircraft Engine RPM Instrument Testing
Air Data Computer Test
Appendices
A ASCII/ISO and IEEE Code Chart
B Mnemonics of the IEEE-488 Interface System
C Glossary of IEEE-488 Terms
D Minimum IEEE-488.2 Device Capabilities
E TEEE-488.2 Commeon Commands and Queries
F IEEE-488.2 Floating-Point Format
G Electrical Specifications of the IEEE-488

Interface System

149

161

201

203

227

Index xi

H Mechanical Specifications of the IEEE-488

Interface System 229
I Sample GPIB Programming Sequences

Using HP-BASIC 233

Serial Poll

Time-out

Combination Serial Poll and Time-out
Manual Activation of SRQ
Instrument Interrogation

Data Transfer Using Fast Handshake

Bibliography 247

Index 249

Preface

It has just been a scant 42 years since the first transistor was
developed in Bell Laboratories, and during that time the technology
which we call electronics has advanced at an ever-increasing expo-
nential rate. We have seen the invention of the integrated circuit
and microprocessor, together with more and more sophisticated
electrical, electronic, and electromechanical devices which are used
everywhere from the home to the battlefield. As the array of these
high-tech inventions expands, a new and very real problem has
come into play. Where will we get the human resources to check,
test, and troubleshoot the millions of devices which are produced
each day at an ever-increasing rate?

Just as the people who designed the telephone system knew many
years ago that there would be a need for more telephone operators
than there were women in America, the electronics industry (in-
cluding Hewlett-Packard Company) realized that some new form
of technology had to be developed to partially eliminate the human
element in the production and testing of sophisticated electrical and
electronic products.

As a result, the system which is called the general purpose
instrumentation bus (GPIB) was born. This powerful interface
system provides a communication link between instruments that
enables the engineer to implement and control, through software,
any test sequence that can be performed manually. In many in-
stances it is possible to perfom some automatic test sequences
which cannot be easily done any other way. Since most types of
instrumentation manufactured today have built-in IEEE-488 capa-
bility, the addition of a low-cost personal computer or controller to

Xiii

xiv |EEE-488 GPIB Manuali

a test setup is all that is required to implement a complete, fully
operational automatic test system.

This book, written in easy-to-understand ianguage, has been
prepared for the inexperienced person as well as the specialist. It
provides not only the principles of the GPIB system, but also
illustrates some of the various types of GPIB instruments which
can be used to design an automatic test equipment (ATE) system.
Included are many programming examples which are explained in
detail. Although these programs pertain to specific GPIB instru-
ments, they can be easily used for other test setups with a slight
modification of the commands. The final chapter contains actual
case histories, including software, in which the GPIB system was
used to enhance and improve the production testing of electronic
and electromechanical devices. By using some of the programming
examples which are discussed, a test engineer can set up a GPIB
test station and have it running in far less time than one might think.

This book will be a valuable reference for anyone who is involved
with the IEEE-488 interface system and will provide information
which might otherwise have to be obtained from many different
sources.

TJ Byers, Consulting Editor for IEEE-488 General Purpose
Instrumentation Bus Manual, deserves special thanks for his role
in initiating this project and using his considerable experience to
guide it to its successful completion.

— Anthony J. Caristi

Chapter 1

The General Purpose
Instrumentation Bus

INTRODUCTION

This book provides a complete description of the fundamentals of
the IEEE-488 interface system, which is commonly referred to as
the General Purpose Instrumentation Bus (GPIB). It will provide
full technical details, written in easy-to-understand language, to the
first-time system user or technician, as well as be a valuable
reference to the professional GPIB system designer or programmer.

The IEEE-488 interface system has been carefully designed to
provide an integration of one or more instruments to a computer or
controller, which allows two-way communication, to simplify and
automate the testing of any electric, electronic, or electromechani-
cal device in production, now or in the future. Since it is a design
philosophy as well as an interface system, it greatly simplifies the
role of the test engineer in the design and implementation of
automatic test equipment (ATE). It has been designed with the
necessary flexibility to accommodate a growing number of all types

2 IEEE-488 GPIB Manual

of electronic instruments which are being manufactured today and
tomorrow.

The IEEE-488 interface is a digital system in which up to 15
instruments or devices may communicate with each other, under
control of a master unit, when connected together in parallel using
specially designed cables and connectors referred to as the “bus.”
Supervision of the system is provided by a master unit, called the
controller, which is usually either a common personal computer or
a dedicated bus controller. The software that is required by the
system can be easily written by anyone who is familiar with the
BASIC computer language, or is obtainable from many sources
which provide a multitude of universal programming packages.

Since modern-day IEEE-488 bus controllers provide the neces-
sary protocol, an IEEE-488 system can be set up and run using a
few user-friendly software commands. This allows a first-time user
to be able to design a simpie system in littie more time than it would
take with a manual test setup. These basic commands, as well as
the more complex, are explained in detail in the chapters to follow.

HISTORY

In September 1965 the Hewlett-Packard Company, Palo Alto,
California, began to investigate the possibility of interfacing any
and all of its future instruments with each other. It was obvious that
the level of sophistication of electronics technology was advancing
at such a rate that more complex and superior test instrumentation
would soon be commonplace. As new instruments were developed,
it became ciear that in many test situations it would be almost
impossible to train sufficient numbers of production personnel to
properly operate these instruments to their fullest capability. As
each new type of test instrument or device was added to the arsenal
available to the test engineer, the number of tests which could be
performed, and their complexity, increased at an exponential rate.

The General Purpose Instrumentation Bus 3

In order to partially eliminate the human element in the ever more
complex test setups, some form of communication was needed so
that one instrument could “talk” to another and vice versa. That was
the beginning of what was originally called the Hewlett-Packard
interface bus, more commonly referred to as HP-1B.

A newly formed group called the International Electrotechnical
Commission (IEC) took the initial efforts of Hewlett-Packard Com-
pany as a starting proposal for an interface system. In September
1974 this proposal was approved for balloting by the IEC. In April
1975 the Institute of Electrical and Electronic Engineers (IEEE)
published a document known as IEEE-488/1975, entitled “Digital
Interface for Programmable Instrumentation.” This contained the
electrical, mechanical, and functional specifications of an
American standard interface system. In January 1976 the American
National Standards Institute (ANSI) published an identical standard
called MC1.1.

In November 1978 the IEEE-488 document was revised, primari-
ly for editorial classification and addendum, and the new document
was identified as IEEE 488-1978. This document has been the
standard for the general-purpose instrumentation bus (GPIB) which
has been adopted by hundreds of manufacturers all over the world.
More than 40,000 copies of the IEEE-488 document have been
distributed to more than 250 manufacturers in 14 or more countries.
It is estimated that there are more than 4000 products which use the
GPIB byte serial, bit parallel interface system for automatic or
semiautomatic testing.

IEEE-488.2

When the IEEE-488 standard was adopted in 1975, designers and
users were able to use the system, but not without many problems
which they were forced to solve. Because the IEEE-488 document
had purposely left some problems unsolved, it was up to the users

4 IEEE-488 GPIB Manual

to determine which instruments would function with the controller,
and each other, as required. It soon became apparent that each
manufacturer handled message protocol and data handling dif-
ferently.

A first attempt to standardize the data formats resulted in the
creation of a document called “IEEE 728, Recommended Practice
for Code and Format Conventions for use With IEEE 488-1978.”
The formats which were recommended had evolved over time and
had worked well with the interface system. This helped provide the
information which would later be included in the next major
revision of the IEEE-488 document.

In June 1987 the IEEE approved a new standard for program-
mable instruments and devices. This was called TEEE Standard
488.2-1987 Codes, Formats, Protocols, and Common Commands.
The original document, IEEE 488-1978, was retitled IEEE-488.1
The new standard works with, and enhances, the original one. Some
of the issues which IEEE-488.2 addresses are:

A required minimum set of IEEE-488.1 capabilities
Reliable transfer of messages between a talker and listener
Precise syntax in those messages

A set of commands which would be useful in all instruments
Common serial poll status reporting

Synchronizing programming with instrument functions
Automatic address assignments

N s LN =

The TEEE-488.2 standard was designed to make the interface
system easier to use by requiring that all devices provide certain
capabiiities such as taik and listen, respond to device clear com-
mands, and be capable of service requests. Although other func-
tions such as parallel poll and device trigger are left optional with
the instrument manufacturer, IEEE-488.2 requires that when these
functions are implemented, they provide a minimum capability
level.

The General Purpose Instrumentation Bus 5

< DEVICE DEPENDENT MESSAGES >
<COMMON COMMANDS AND OUERI%
<SYNTAX AND DATA smucwmé
éEMOTE IF MESSAGE>

D C B A A B C D

———— GPIB —»,‘—GPIB —— lay———— GPiB -~
INSTRUMENT BUS INSTRUMENT

MFRS. IEEE-488.2 IEEE-488.1 IEEE-488. 2 MFRS.

SPECS. STANDARD ™ STANDARD ™ STANDARD SPECS.

Figure 1-1. GPIB structure illustrating the IEEE-488.1 and 2 standards.

Figure 1-1 illustrates how the IEEE-488.2 standard works with
the existing standard IEEE-488.1. The interface system can be
divided into several functional layers, with the lowest layer being
the Remote Interface Messages layer or the IEEE-488.1 bus. The
function of this section includes the mechanical aspects such as the
cable and connectors, the electrical specifications, and the hand-
shake function.

The next two layers are defined by the new IEEE-488.2 standard.
These consist of the Syntax and Data Structures layer and the
Common Commands and Queries layer. The Syntax and Data
Structures layer defines how data is transmitted between devices
by specifying the usage of the ASCII (American Standard Code for
Information Exchange) character set for data representation. In-
cluded in this specification is the data format for binary numbers.

5] IEEE-488 GPIB Manuali

The uppermost layer is the Device Dependent Messages layer
which is defined by the manufacturer of the instrument or device.
The messages which are defined here are also called device com-
mands; they control the performance and functions of the GPIB
device in accordance with the requirements of the device as

specified by the manufacturer.

MAJOR INTERFACE SYSTEMS
There are now four major standards of interface systems. They are:

IEEE 488-1978 (now called IEEE 488.1)

ANSI MC1.1 (identical to IEEE 488.1)

IEC 625.1 (identical except for the connector)

B.S. 6146 (British standard, identical to IEC 625.1)

LD

Today the most widely used interface system is the IEEE-488,
and it is implemented in several brand versions: HP-IB, GPIB,
IEEE Bus, ASCII Bus, and Plus Bus. For all practical purposes
IEEE-488, HP-IB, and GPIB are used synonymously. This book
will use these terms interchangeably, and they can be considered to
be identical.

Today, all manufacturers of test equipment must provide GPIB
capability to remain competitive. Any instrument which does not
contain this capability is limited in its application and may be
noncompetitive in the vast world of electronic test instrumentation.
This must be considered by test engineers and those who are
involved with production testing of electronic or electromechanical
instruments and devices. The use of an interface system must be
considered at the onset of a testing program to increase efficiency,
reduce costs, and help eliminate errors on the production line.

The General Purpose Instrumentation Bus 7

DESCRIPTION OF THE IEEE-488 (GPIB)
INTERFACE SYSTEM

In the GPIB interface system three categories of instruments or
devices are used. These are talkers, listeners, and controllers. A
talker is a unit which is able to transmit on the bus pertinent
measurement data or information concerning its status, either
asynchronously or in response to a command from the controller.
There can be only one active talker on the bus at any given time.
Some examples of talkers are voltmeters, frequency counters, and
tape readers. Talkers are generally listeners as well. A listener is a
device which can receive commands and data when addressed and
may or may not be capable of the talk function. There can be up to
14 active listeners simultaneously on the bus. Examples of listener
devices which usually have no talk capability are printers, display
devices, and programmable power supplies.

The controller is the brains of the system; it provides the com-
mands (through its programming and software) that cause each and
every instrument and device on the bus to perform its task. The
controller is usually both a talker and listener. The ubiquitous
personal computer can perform very satisfactorily as an IEEE-488
controllerifitis so equipped. There are several dedicated IEEE-488
controllers, one of which is the Fluke model 1722A Instrument
Controller.

Any instrument or device on the bus can be both a talker and
listener (but not simultaneously). In any given interface system
there can be only one active controller, but it is possible for a very
complex interface system to have several controllers. In such cases
one of these is specified as the master controller and it will deter-
mine which unit will be in control of the bus at any given time.

It is not necessary for an interface system to have a controller. A
minimum GPIB system consists of a single talker and single
listener, with no controller. An example of such a system would be

8 IEEE-488 GPIB Manuai

GPIB
INST.
GPIB — T
INST. &218-
GPIB GPIB GPIB GPIB GPIB
GPIB GPIB
INST. :] L L? INST. INST. INST. INST. INST. INST.
| ~1—] 17 —F———]
[__I O C—{ —
]
CONTROLLER CONTROLLER
STAR DAISY CHAIN OR LINEAR

Figure 1-2. Two methods of interconnecting GPIB instruments into a system.

a voltmeter (talker) and a printer (listener). This system would
periodically assimilate voltage readings and provide hard copy of
them.

All instruments on the interface bus are connected in parallel to
each other by means of an IEEE-488 cable containing 16 active
wires that are terminated at each end in a specially designed
hermaphrodite connector. This allows a group of instruments to be
connected together in either a “star” or “daisy chain” configuration
as illustrated in Figure 1-2.

Part of the IEEE-488 document includes the specifications for
the connectors which must be used to interconnect all devices and
instruments. Figure 1-3 illustrates the pin-out diagram of this
ribbon-type connector, which contains 24 pins and constructed so
that it contains both a male and female connector, similar to the
arrangement which may be found on Christmas tree light sets. The
purpose of this arrangement is to allow connectors to be stacked on
top of each other so that in a given test setup all devices can be
physically located in close proximity to each other. The
male/female design of the connectors also permits interconnection
of all units in the daisy chain or linear configuration. In any test

The General Purpose Instrumentation Bus 9

SINGNAL GROUND
P/O TWSTED PAR WITH 11
P/G TWISTED PAR WITH10
SHOULD BE GROUNDED P/C TWSTED PAIR WiTH §
NEAR TERMINATION OF P/0 TWSTED PAIR WITH 8
THER WIRE OF TWISTED PAR) o /oy nysten FaR WiTH 7
P/C TWSTED PAR WITH 6
REN
DI08
Dio?
DIo6
0I0S

SHIELD ~e———— CONNECT TO
AN EARTH GROUND
SRG

IFC

NDAC

NRFD

DAV

€0t

DI04

Di03

0i02

Dio!

TYPE $7 MICRORISBON CONNECTOR

Figure 1-3. IEEE 488 connector showing the identity of the pin connections.

setup, there will always be at least one connector available which
can be used to add an additional instrument to the setup, if neces-
sary.

The IEEE-488 specification permits up to 15 devices to be
connected together in any given setup, including the controller if it
is part of the system. The maximum length of the bus network is
limited to 20 meters total transmission path length. It is recom-
mended that the bus be loaded with at least one instrument or device
every 2 meter lengths of cable. If, under certain conditions, it is
necessary to exceed the maximum permitted length of 20 meters,
this limit may be increased by the use of IEEE-488 extenders. These
devices contain active circuitry which can handle the added
capacitance and inductance of long IEEE-488 cable lengths.

The cable, or “bus,” which connects all instruments of the inter-
face system in parallel with each other contains 16 active wires. Of
these, eight are used for data transmission in a bit parallel, byte
serial format. The remaining eight wires provide interface and

10 IEEE-488 GPIB Manual

GPIB GPIB GPIB GPIB
LISTENER LISTENER LISTENER USTENER
AND /OR AND /OR AND /OR AND /OR

TALKER TALKER TALKER TALKER
[L] LI T

[[JULLT

HANDSHAKE BUS

\%‘7\7

DATA BUS

LU UL

)/

Figure I-4. General purpose instrumentation bus structure.

communication management. The bus is a two way communica-
tions channel, and data flows in both directions. Figure 1-4 il-
lustrates the structure of the IEEE-488 bus and identifies the 16
connections of the interconnecting cable.

GPIB ADDRESSING

Since the bus is a “party line” type of communications channel,
each instrument must be assigned a unique address so that any
message or data transmitted by any device on the bus is accepted
by only its intended recipient. A total of 31 addresses, called
primary addresses, are available and these are usually selected for
each instrument or device by means of a set of switches or jumpers
located at the rear or inside the device. Figure 1-5 illustrates a
typical set of address switches which usually may be found at the
rear of an instrument which has IEEE-488 capability.

The address, 0 through 30, to which an instrument is set is
determined by the decimal equivalent of the 5 binary bits repre-
sented by the switch or jumper positions. The switches or jumpers
have a weight of 1, 2, 4, 8, and 16; therefore, the sum of the weights

The General Purpose Instrumentation Bus 11

Figure 1-5. Typical rear panel of GPIB instrument. Courtesy of ICS
Electronics Corp.

of all selected switches or jumpers becomes the GPIB address of
the unit. Any address number from 0 to 30 is valid; address number
31 is reserved for control purposes and must not be used. Address
21 is usually reserved for the controller talk/listen address and is
not recommended to be used for an instrument address. Every
instrument or device which is part of a given interface system must
be assigned its own unique address number and this cannot be
shared by any other instrument on the bus.

Some instruments or devices may also require a secondary ad-
dress which provides access further into the unit itself. Secondary
addresses are usually preset at the factory, but may be changed in
the field by rewiring a set of jumpers inside the device. It is
permissible to duplicate secondary addresses on two or more in-
struments which are part of the same interface system. GPIB
devices which are capable of accepting a secondary address com-
mand are called extended listeners and/or talkers.

The primary address which is selected by the user will actually
specify two corresponding address codes on the data lines. These
are called the talk address and listen address, and the sixth and

12 IEEE-488 GPIB Manual

seventh bits of the data byte are used to distinguish between the
two. Figure 1-6 is an IEEE-488 code chart which illustrates the talk
and listen ASCII address characters for all valid address codes.

It is usually not necessary to specify the individual talk or listen
characters when programming commands, since most controllers
in use today wiii automaticaiiy configure the sixth and seventh bits.
A simple command such as OUTPUT 703 in HP BASIC, for
example, will instruct the device with primary address 03 to listen.
The command ENTER 703 will instruct that same device to talk.
In this example, 7 as part of the address code is required by a typical
Hewlett-Packard controller in accordance with a select code which
can be physically set on an interface card located within the com-
puter or plug-in interface. Select codes can come into play when
there is more than one controller in the interface system.

Some GPIB devices (such as plotter/printers) may have more
than one talk or listen address (multiple addresses), and these
devices typically use fewer than the usual five bits to select the
address. For example, if the bit 1 (binary weight) switch was
omitted on a device, a single setting of the remaining four switches
would select two addresses which are consecutive, such as 8 and 9
or 14 and 15.

Do not confuse multiple addresses with a secondary address.
Each multiple address in a device is a primary address and must be
treated as such in the software commands. To access a secondary
address in a device the controller must first transmit the primary
address, then the secondary, usually separated by a colon or comma.

GPIB COMMUNICATIONS

The GPIB is a two-way communications channel which carries data
and bus management information on a total of 16 wires, and it is
organized using 8 binary bits grouped into bytes which are called

The General Purpose Instrumentation Bus 13

GPIB SWITCH NO. ADDR. CHAR.
ADDRESS | | 5 4 3 2 1 TALK | LISTEN
00 000 00O ° sP
01 000 01 A !
02 000 10 B .
03 000 11 c ¥
04 004, 00 D $
05 00 4, 01 E %
06 00, 10 F &
07 00 7 11 G '
08 019 00 H (
09 019 01 I)
10 0 19 10 J .
n 0 19 11 K +
12 01400 L .
13 0 14 01 M -
14 014 10 N .
15 01 7 11 0 /
16 1009 00 P 0
17 109 01 Q 1
18 1 09 10 R 2
19 109 11 s 3
20 10100 T 4
21 101 01 U 5
22 101 ‘0 v 6
23 1 0 ¢ i1 w 7
24 11000 X 8
25 110 01 Y 9
26 110 10 b4 :
27 119 11 [;
28 11100 \ <
29 1 11 01] =
30 11110 2 i
31 1111 g - ?

Figure 1-6. GPIB address chart showing the address switch positions required
for each address, and the ASCII characters for the TALK and LISTEN addresses.

words. Data and address information is carried on the data
input/output lines which are identified as DIO-1 through DIO-8. Of
the remaining eight wires, three are used for the handshake function
and the last five provide system control and management.

The GPIB uses a negative logic system which specifies a zero
logic level on any line which is “true.” Conversely, any line which

14 IEEE-488 GPIB Manual

is open has a logic level of 1 and is defined as “not true,” or “false.”
An important reason for this negative logic convention is to allow
GPIB devices to be designed with transistor open collector output
circuits which pull the lines to zero voltage level to indicate a true
condition. Using this system, it is possible to connect all devices on
the bus in parallel, and any one is thus capabie of creaiing a true
condition by its open collector transistor driver. Additionally, the
negative logic convention reduces noise susceptibility in the true
state and provides a not true, or logic 1, state on any line which is
not in use or is disconnected.

Messages and data are asynchronously transferred over the bus
in a byte serial, bit parallel format using an interlocking three-wire
handshake technique. This ensures data integrity in a multiple
listener system where the data acceptance of each listener can take
place at widely different rates. A two-wire handshake system could
allow multiple acceptance of the same ASCII character in the fast
listener as the slower listeners were still assimilating data.

The maximum data transfer rate is 1 megabyte per second over
limited distances. Using the full transmission path limits the rate to
about 250 or 500 kilobytes per second. However, since the system
is always limited by the acceptance rate of the slowest addressed
listener, the actual data transmission rate in any given system may
be much less.

Data is transferred from device to device over the bus using the
eight bidirectional data lines. Normally a 7-bit ASCII code is used.
The international equivalent to this is the 7-bit International Stand-
ards Organization (ISO) code. Figure 1-7 illustrates the byte serial,
bit parallel sequence when transmitting the message “GPIB.”

With various software techniques, other methods to compress
information on the data lines may be employed, which will greatly
enhance the speed with which data may be transferred. Some types
of data, such as transfer of oscilloscope waveform information,
require enormous amounts of information. More efficient methods

The General Purpose Instrumentation Bus 15

I : BYTE SERIAL l
& A L
00-7 N A /N
? DIO-6 ./ /L /L /L
: DIO-5 vd & AN /L e _—/1'
E 0i0-4 v g & N—ALT
f s S D f
| DI0-2 /L d /L /L—__
L AT e AT
ascifiso | 6 P I B8
DECIMAL | 71 80 73 66

Figure 1-7. “GPIB” sequence as transmitted in bit parallel, byte serial format.

of transmitting this data will improve the operating characteristics
of the bus.

HANDSHAKE

The purpose of the handshake function in the GPIB interface
system is to ensure that all messages transmitted on the bus are
properly received by the addressed listeners. Many of the command
messages which are used are intended to be received by more than
one listener, and before any new messages can be initiated, each
listener must acknowledge that it has properly received the message
addressed to it. The GPIB system uses a three-line handshake,
which was selected over previous systems that used just two lines.

16 IEEE-488 GPIB Manual

DIO~1 LSS AL e e % e %
"~ SIS ISKDATA BYTE &8
P00 B A
DiIC-8 LA N Le%efat’et et el
|
|
i
i NOT VALID
H I
i f
bav i VALID |
L- ! |
1 1 [
H-] |
I 1
NRFD | | i i ‘
1 1
L A R T i
[] I | |
H- [1 I
: i : | |
NDAC o ! I
1 | 1 [1 |
1 1 | 4 1
L ! ! I o i
1 I rro !
R T oo '
TIME TOT T2 T3 T4 15 16 7

Figure 1-8. Timing diagram of the handshake sequence.

A three-wire system prevents multiple acceptance of data by a fast
listener while a slow one is busy accepting the message.

Figure 1-8 illustrates the functions of the handshake lines as a
data byte is transmitted and accepted by all addressed listeners on
the bus. The three handshake lines which control the data transfer

are:

1. NRFD (not ready for data). This line is used by all devices
on the bus to indicate their conditions of readiness to accept
a data transmission. If any instrument is not ready to receive
data for any reason, it will pull the NRFD line low, indicat-
ing a true condition and inhibiting the controller (or any
other talker on the bus) from transmitting. Only when all
devices on the bus release this line so that its logic level is
1 will a data transmission be permitted.

The General Purpose Instrumentation Bus 17

DAYV (data valid). This line is used by the source of data
(talker) to indicate that the eight data lines are settled and
valid. The DAV line does not become true (logic level zero)
until the NRFD line has been released by all devices and
allowed to assume a logic 1 level.

NDAC (no data accepted). The addressed listener(s) on the
bus will set the NDAC line low (true) to indicate that it has
not yet accepted the data. When the data is accepted, the
NDAC line is released. If more than one listener is required
to accept data, each will hold the line low until it does. When
the slowest listener on the bus has finally accepted the data,
the NDAC line is released and goes to the logic 1, or false,
condition.

The following is a summary of the handshake sequence as
illustrated in Figure 1-8, shown from time zero (T0) to T7:

TO. The source (talker) checks for listeners and places a data
byte on the DIO 1 through DIO 8§ lines.

T1. As all listeners become ready for the data, each releases
the NRFD line so that it goes high with the slowest listener.
T2. The source validates the data by pulling the DAV line low.
T3. The first acceptor sets the NRFD line low, indicating that
it is not ready for the next byte to follow.

T4. When the slowest acceptor receives and accepts the data,
it releases the NDAC line to indicate that all listeners on the
bus have accepted the data.

T5. The DAYV line goes high to indicate that the data is no
longer valid. The data may then change to form the next byte.
T6. The first acceptor sets the NDAC line low in preparation
to receive the next valid byte.

T7. NRFD goes high with the slowest acceptor and the cycle
is repeated.

18 IEEE-488 GPIB Manual

When sending addressed commands, the interface message con-
sists of the primary address of the intended acceptor, followed by
the interface function. During this sequence the attention line is true
so that the listeners accept the information on the bus as either an
address or command.

Tha intarf 1 tos third al + 11ad
1€ INICTiact mcs5age Can ais0 Comniain a inird Siemeiiy, Cantd a

device dependent command, which programs the receiving instru-
ment to assume a certain condition or perform a certain function.
For example, a voltmeter could be programmed to read dc volts or
a frequency counter could be told to take a frequency reading.

Many typical commands to instruments and devices contain a
group of characters and digits called a string. The acceptor receives
the command, character by character, using the handshake function
to acknowledge that it has properly received what was sent.

Chapter 2

IEEE-488 Protocol

In the IEEE-488 interface system there is a bidirectional flow of
commands and data between the controller and interconnected
devices. Communications between these units is achieved by send-
ing and receiving a series of messages via the 16 lines of the bus.
There are two basic categories of messages: interface and device
dependent.

Interface messages are used to manage the bus and are called
commands. They instruct the listeners and talkers in the system to
assume a desired mode. These commands are used to initialize the
bus, for setting devices to remote or local operation, to instruct
devices to listen, unlisten, talk, untalk, and for other functions
which may be required.

DEVICE-DEPENDENT MESSAGE UNITS

Device-dependent message units (sometimes referred to as data)
contain the information that a GPIB device is to transmit on the bus
and are not commands. For example, a voltmeter may have stored
a reading in its buffer, and a command from the controller would

19

20 IEEE-488 GPIB Manuai

instruct the meter to transmit it so that it can be stored in the
controller’s memory for further processing. Data assimilated by the
controller could be sent to a printer which would then produce a
hard copy. A digitizing oscilloscope may have stored the shape of

a complex waveform to be later reproduced on the controller CRT.
In short, device dppendpnf messaoge units are the data which is

A1l UiiUiey mw ViSO LT LLLSSG R waiilS HLI ¥ § L v awa a:2aSa2

transmitted on the eight data I/O lines of the interface bus when the
ATN line is false and the active talker is sourcing data to all active
listeners.

Normally a 7-bit ASCII code (Figure 2-1) is used, but the
manufacturer of a GPIB device is free to use any other encoding
technique to compress information on the eight lines. Even when
such standard formats as pure binary or BCD are used, the sequence
between the least and most significant bits could be different for
two manufacturers.

An amendment to the IEEE-488 standard, called IEEE-P981,
may provide some standardization among the various manufac-
turers of GPIB instruments. This amendment establishes acommon
message structure and defines control protocol procedure.

INTERFACE FUNCTIONS

The IEEE-488 document specifies a total of 11 interface functions
which can be implemented in any GPIB device. It is not necessary
for all to be designed into an instrument; the manufacturer of that
device is free to use as many or few as needed for the device to
perform its intended function. Each interface function is identified
by a mnemonic, which is a one- to three-letter word used to describe
a particular capability. A brief description of each function is
described in Table 2-1, and is covered in detail in Chapter 5.

In addition to the 11 basic interface capabilities illustrated in
Table 2-1, the IEEE-488 document also describes in detail subsets
of all functions. Each subset is identified by assigning a number

IEEE-488 Protocol 21

ASCII /ISO & IEEE CODE CHART

B7 0 0

0 s} 1 1 1 1
s 00] ° 1 1°|11 °°| °1]°| i
NUMBERS

ELZSSBZ | covtroL | RUMBERS | uppeR case | LOWER CAsE
0 000] NUL | DLE | sP 0 @ P) p
0001] soH [D1) 1 A Q g q
00 10] sTx | DC2 . 2 8 R b r
001 1] e7x | pc3 | # 3 c s c s
o100 cor[oca | § 4 D T d t
0101 ENQ [NAK | % 5 E U e u
0110] ACK |S\N | & 6 F v f v
0111 BEL ETB ' 7 G w g w
70008 |CAN| (| 8 H X h x
1001|] HT | EM) g] Y i y
1010| LF | SuB . : J Z i z
1011| vt |esc | + | : K i k t
1100] FF [rs , < L \ I :
1101] cR | GS - = M I !
1110} so | RS . > N ~ n ~

1111} s us / ? 0 - o "‘(’32':’)'

s coanas] ADISEoNES AODRESsEs | SECONDARY ADDRESSES

OR COMMANDS
Figure 2-1. ASCII code chart illustrating values for bits 1 through 7 of a data
byte.

(from zero up) after the mnemonic. For example, there are nine
subsets of Talker (T) which are identified as TO through T8. Subsets
of interface functions are discussed in Chapter 5.

INTERFACE MANAGEMENT LINES

In addition to the handshake lines there is a total of five general
interface management lines which are used to provide an orderly
flow of commands and data through the interface. These lines are:

22 IEEE-488 GPIB Manual

Table 2-1. Interface Functions.

Interface Function Mnemonic Description

Talker (Extended Talker) T (TE) Device must be able to transmit

Listener (Extended Listener) L (LE) Device must receive commands and
data

Source Handshake SH Device must properly transfer a
multiline message

Acceptor Handshake AH Device must properly receive remote
multiline messages

Remote/Local RL Device must be able to operate from
front panel and remote information
from bus

Service Request SR Device can asynchronously request
service from the controller

Parallel Poll PP Upon controller request device must

uniquely identify itself if it
requires service

Device Ciear DC Device can be initialized to a pre-
determined state

Device Trigger DT A device function can be initiated
by the talker on the bus

Controller C Device can send addresses,

universal commands, address

commands, and conduct polls
Drivers E This code describes the type of

electrical drivers in a device

Attention, Interface Clear, Remote Enable, Service Request, and
End Or Identify. The mnemonic identification for these lines and a
orief description of each is as foliows:

1. ATN. This line must be monitored by all devices on the bus
and respond to it within 200 nanoseconds. Its purpose is to
place the interface in the command mode when true, and

|IEEE-488 Protocol 23

data mode when not true, or false. When the bus is in the
command mode, all devices with listening capability must
receive the next transmission and accept information on the
data lines as either commands or addresses. When data is to
be sent to addressed listeners, the ATN line is set high (not
true).

IFC. This line is used only by the system controller to
initialize the interface to a standby or idle state in which
there is no activity on the bus. All devices must monitor this
line at all times and respond to it within 100 microseconds.
When IFC is set true, all devices addressed to either talk or
listen are set to untalk or unlisten, and the serial poll function
(if in use) is disabled.

REN. This line is used only by the system controller to place
all listeners in the remote programming mode when they are
addressed to listen. All devices capable of both local and
remote operation must monitor the REN line and respond to
it within 100 microseconds. When the system controller sets
this line high (not true), all devices return to local operation.
SRQ. The Service Request line is used by one or more
devices on the bus to indicate a need for attention, as might
be caused by a syntax error, overload, etc. Such a request by
any device can interrupt the current sequence of events. The
SRQ line can be cleared by a serial poll only, and the
controller must perform a poll of all devices on the bus to
determine which one requires service.

EOIL. When the ATN line is not true, the End or Identify line
is used by an active talker to indicate the last byte of a data
message. The IEEE-488 standard also permits the end of a
transmission to be indicated by the generation of a line feed
character (ASCII 10). When ATN is true, the controller uses
this line to execute a parallel poll in which up to eight devices
on the bus place a status bit on the eight data I/O lines.

24 IEEE-488 GPIB Manual

UNIVERSAL COMMANDS

The five multiline universal commands are Device Clear, Local
Lockout, Serial Poll Enable, Serial Poll Disable, and Parallel Poll
Unconfigure. Unlike the four uniline commands already described
(IFC,REN, ATN, IDY), these universal commands are transmitted

on the data lines. Devices on the bus interpret such data as com-
mands, since the ATN line is true. The universal commands are:

1. Device Clear (DCL). This command causes each recogniz-
ing device on the bus to return to a predefined state. The
devices respond only if they are addressed or in remote
control. The state at which each device is reset is defined by
the manufacturer of the equipment.

2. Local Lockout (LLO). This command is used to disable the
front panel controls or return to local pushbutton on those
devices which recognize the command. This is useful during
an automatic test sequence when it is mandatory that test
personnel be prevented from altering a predetermined
operating mode of the instrument or device.

3. Serial Poll Enable (SPE). This command causes ail talkers
on the bus to assume a serial poll mode. When each is
addressed to talk the device will place on the bus data lines
a single 8-bit word which contains information on the status
of the device, as specified by the manufacturer of the equip-
ment.

4. Serial Poll Disable (SPD). This command will follow the
serial poll enable command so that each talker on the bus is
returned to its normal state of outputting data when ad-
dressed to talk.

5. Parallel Poll Unconfigure (PPU). This command will reset
all devices which recognize a parallel poll command so that
they are in an idle state and unable to respond to it.

IEEE-488 Protocol 25

In addition to the five universal multiline commands described
above, there are two additional universal commands which are
technically classified as addresses. These are Untalk (UNT) and
Unlisten (UNL).

The Untalk command unaddresses the current talker on the bus.
It is not necessary to use this command to unaddress the current
talker since addressing the next talker automatically unaddresses
all others, but this command has been provided for convenience.

The Unlisten command unaddresses all listeners on the bus. It is
not possible to unaddress one listener; all will be unaddressed. This
command will precede addressing desired listeners when it is
necessary that only such listeners receive the next data to be sent
on the bus.

ADDRESSED COMMANDS

The following is a description of a group of commands which are
called addressed commands. It is not necessary for devices on the
bus to respond to any or all such commands, since the manufacturer
of a GPIB instrument or device determines which, if any, are
necessary for the proper operation of the unit when under remote
control.

1. Group Execute Trigger (GET). This command causes all
currently addressed devices which have GET capability to
receive and respond to the command by initiating a
preprogrammed action. For example. a voltmeter can take a
reading, or a generator can produce a burst of oscillation.
Some devices on the bus may also require an additional
command to produce the desired function. The purpose of
the GET command is to provide a trigger command which

26 IEEE-488 GPIB Manual

can produce simultaneous triggering in all addressed
devices.

2. Selected Device Clear (SDC). This command causes a

currently addressed listener to reset to a predetermined state

as specified by the manufacturer of the device.

Go to Local (GTL). This command causes the currently

addressed listener to leave its remote state and return to

manual front panel control. Should the device be read-
dressed with a subsequent command, it will return to the
remote mode.

4, Parallel Poll Configure (PPC). This command is used in
conjunction with a secondary command, Parallel Poll
Enable Command. It causes the addressed listener to be
configured in accordance with the PPE command which
follows it. When the device receives the PPC command
from the controller, it responds on a particular data 1/0 line
to indicate its status. Another secondary command, Parallel
Poll Disable (PPD), prevents any response from the the
addressed devices that have received the PPC command.

W

POLLING

The interface system provides two methods of interrogating lis-
teners by the controller. These are referred to as parallel poll and
serial poll. It provides the GPIB programmer with two methods of
determining the status of the devices on the bus.

Serial polling is performed in the form of a sequence in which
each device on the bus is individually addressed and directed to
return a status byte to indicate its condition. The controller should
be directed to poll every device on the bus to be sure that each SRQ
requestor is found. When the serial poll is completed, the controller
then must transmit the Serial Poll Disable and Untalk commands
so that each device on the bus is returned to the normal remote state.

|IEEE-488 Protocol 27

STATUS BYTE

EEREREE

RQS ~-———— |[EEE-488.1
READ BY SERIAL POLL

7 6 514 3] 2 1 0 | -=———— BIT NUMBER

READ BY »STB?
MSS | ESB |MAV ~s———— |[EEE-488.2

Figure 2-2. Serial poll status byte as defined by IEEE-488.1 and IEEE-488.2.

The advantage of the serial pole sequence is that it will return to the
controller the identity of the requestor at the same time as its status
byte is received. However, when there are many devices on ihe bus
(all devices should be poiled), this can be a very time consuming
procedure.

IEEE-488.1 originally provided the serial poll to allow control-
lers to read the status of the instruments on the bus, but other than
bit 6, RSQ, it left the definition of the remaining bits to the
manufacturer of the device. IEEE-488.2 further defines two more
bits of the status byte (Figure 2-2).

Bit 4 is defined as the message available bit (MAV). This
indicates whether or not the output queue of the instrument is
empty. When data is available, bit 4 will be true.

Bit 5 is the event status bit (ESB), which is used to indicate if an
enabled standard event has occurred. Such events include (but are
not limited to) power on, user request, command errors, and execu-
tion errors.

A faster method of polling is the parallel poll, but only eight
devices can be polled at a time and just 1 bit of information from
each can be transmitted to the controller. If there are more than eight

28 IEEE-488 GPIB Manuai

devices on the bus which must be polled, this may be done in two
or more steps. When the parallel poll sequence is initiated by the
controller, up to eight designated devices on the bus will return its
status bit on one of the data I/O lines. Each device can be directed
to respond on a particular data line through the direction of the
secondary command, PPE, which follows the Paralle! Poll Con-
figure command. It is also possible for some devices to be hard
wired so that they will always respond on a designated data line.
It is possible to have more than one device respond on a given
data line since the open collector output circuits of the devices allow
a parallel connection with a resulting AND or OR of the status bits.

MESSAGE TERMINATION

In the IEEE-488 interface system there is no stipulation as to how
long a message may be, so there must be some method by which
all devices on the bus can determine that a message is indeed
terminated. There are three methods which may be employed to
accomplish this task.

The device which is talking on the bus may add the printer
formatting line feed character (ASCII 10) to the end of each
message. Another method is through the use of the dedicated End
or Identify line (EOI) contained in the interface bus itself. This line
has two purposes, End or Identify, and the ATN line is used to
distinguish between each. When ATN is false, the EOI line can be
used by the active talker to indicate to the listener(s) that the last
byte of a data message has occurred. The third method allows the
EOI line to be asserted concurrently with the line feed character.

Since there is no guarantee that any particular listener on the bus
will respond to all types of message terminations, some manufac-
turers of GPIB devices have designed into their units the capability
of choosing the type of message termination that best services the

IEEE-488 Protocol 29

Table 2-2. Typical Programmable Terminator Commands in a GPIB Device.

Command Syntax Terminator
WO (default) Enable CR, LF, EOI
W1 Enable CR & LF only
w2 Enable CR & EOI only
w3 Enable CR only
W4 Enable LF & EOI only
W5 Enable LF only
W6 Enable EOI only
W7 Disable all output terminators

system. Table 2-2 is a representative illustration of the types of
terminator commands which can be programmed into a Fluke
digital meter. To implement any of these terminators, the meter
would be instructed to do so when it is addressed by the controller.

It is possible to create certain errors in a GPIB program if care is
not taken to ascertain that the message terminator selected by the
software engineer is compatible with all units on the bus. In the case
in which data is transferred by binary block communications, it is
possible that a data byte could be configured as the ASCII line feed
character 00001010. Should this occur in a system in which a
listener is programmed to respond to LF, it will automatically
terminate the message and dump any following data bytes.

Another problem may occur when a carriage return precedes the
line feed character. A controller may end the transmission when it
receives CR, leaving the unsent LF character in the talker. Then,
when that device is instructed to talk again, it will send the leftover
LF character as the first data byte, creating an error in the controller.

This possible source of confusion over the message terminators
has been resolved with IEEE-P981 amendment, which does not
permit GPIB instruments to generate carriage returns for any
reason.

Chapter 3

The IEEE-488.2 Standard

OVERVIEW

The IEEE-488.2 revision was adopted 10 years after the GPIB had
been in use and was designed to help eliminate many of the user
problems which plagued the GPIB. Some of the problems en-
countered were:

1.

Device interface capabilities which would vary from one
manufacturer’s unit to another, even though the type of
instrument might be identical. For example, one digital
voltmeter might be a listen-only device which could not
report back to the controller its readings. Another might not
be fully programmable — for example, it might require a
manual setup of its function or range.

Data formats might be totally different from one unit to
another. One might communicate in ASCII while another
might require binary or BCD coding. It would be difficult
to substitute such units for each other in a given test setup

31

32 IEEE-488 GPIB Manual

without performing some time-consuming rewriting of
software.

3. Message protocol was not standardized. The order in which
a unit receives or transmits commands and data was strictly
up to the designer of the instrument.

4. There was a wide variation in status reporting between units
from each manufacturer. Since the function of most of the
8 bits of the status byte was left up to the discretion of the
manufacturer, it would not be possible to replace one unit
with another without first modifying the test programming.

5. Device-dependent commands were different even though
two identical units performed the same function. The
software engineer could not assume that any command, no
matter how common or frequent it might be used, would be
suitable for all similar type instruments.

These problems, and others, were solved for the most part by the
adoption of the IEEE Standard 488.2 Codes, Formats, Protocols,
and Common Commands for Use with ANSI/IEEE Standard 488.1
— 1987. Included in the new standard is a set of codes, data formats,
message protocols, and common commands which would be used
with, and in addition to, the original standard (now identified as
IEEE-488.1). Figure 3-1 illlustrates the structure of the new stand-
ard as it enhances the original one.

INTERFACE CAPABILITIES

IEEE-488.2 defines a minimum set of capabilities which each
instrument or device must implement. Table 3-1 is a tabulation of
these required capabilities. A listing of code definitions of the
interface capabilities tabulated are in Appendix D.

33

The IEEE-488.2 Standard
GPIB DEVICE BUS GPIB DEVICE
< MFR. SPECIFIED DEVICE FUNCTIONS >
| I
< COMMON SYSTEM FUNCTIONS >|
I T !

MESSAGE COMMUNICATIONS FUNCTIONS

<

T)
MOTE INTERFACE FUNCTIQ}

T

1
|
|
|
I
|
|
| |

T 1
| |
| |

e}

IEEE-488.2

Figure 3-1

IEEE-488.1

1
|
L
!
|

—————
IEEE-488.2

IEEE-488.1 and IEEE-488.2 functional structure.

SYNTAX AND DATA FORMATS

The IEEE-488.2 document specities the required data format for

any type of message that may be sent, including numbers and
strings of characters. Included in the types of numbers which are
specified are binary, octal, and hexadecimal. A listing of these

Table 3-1 Minimum IEEE-488.2 capabilities.
Caopability Code Comment
Source Handshaoke SH1 Full Capability
Acceptor Hondshake | AH1 Full Copability
Talker T(TE)S, or Baosic Talker, Serial
T(TE)6 Poll, untalk on MLA
Listener L(LE)3, or Basic Listener,
L(LE)4 Unlisten on MTA
Service Request SR1 Full Copability
Device Clear o Full Capability
Remote Local RLO or RL1 None or Full Capability
Parallel Poll PPO or RL1 None or Full Capability
Device Trigger DTO or DT None or Full Capability
Controlier CO or C4 with None or Respond to SRQ,
CS5, C7, C8 or C11 | Send IF Msg., poss,
Receive control
Electrical Interface E1 or E2 Open Collector or Tristote

34 IEEE-488 GPIB Manual

Table 3-2 Required and optional data formats specified by IEEE-488.2.

LISTENER FORMATS STATUS
<Decimal Numeric Progrom Data> Required
<Chorocter Program Dato> Optional
<Suftix Progrom Doto> Optional
<Non-Decimal Numeric Program Daota> Optional
<String Progrom Data> Optional
<Arbitrary Block Progrom Dato> Optional
<Expression Program Data> Optional

TALKER FORMATS

<NR1 Numeric Response Dato> Required
<Arbitrory ASCIl Response Doto> Required
<Choracter Response Doto> Optional
<NR2 Numeric Response Data> Optional
<NR3 Numeric Response Dato> Optionol
<Hexodecimaol Numeric Response Dato> Optional
<Octol Numeric Response Data> Optionol

<Binary Numeric Response Dato> Optional
<String Response Dato> Optioncl
<Definite Length Arbitrory Block Response Daota> Optionol
<indefinite Length Arbitrory Block Response Data> Optionol

formats, some of which are optional for the equipment designer, is
illustrated in Table 3-2.

In order to allow older GPIB devices to properly communicate
with the newer instruments which are designed to comply with
IEEE-488.2, a new concept has been introduced. This is referred to
as precise talking and forgiving listening. This requires GPIB
devices to accept a wide variety of data formats and codings so that
the information transmitted on the bus is received and accepted
without error (forgiving listening).

The exact opposite is true when the newer devices must talk on
the bus (precise talking). The data transmitted by any IEEE- 488.2
instrument must adhere to a rigorous set of formats. This ensures
that new devices will be able to communicate with those using the

The |IEEE-488.2 Standard 35

older formats such as IEEE 728. The concept of precise talking and
forgiving listening is very important, and it ensures compatibility
between older and newer GPIB devices.

DEVICE MESSAGE PROTOCOLS

Under the original IEEE-488 document, any device which received
a message containing more than one command or data would be
allowed to interpret and react to that transmission in any way that
the manufacturer desired. This freedom of message protocol made
it difficult for the software engineer to accurately predict how
instruments or devices from various manufacturers would react to
any given multiple message.

The 1EEE-488.2 document carefully describes a message ex-
change protocol which is to be used on the IEEE-488.1 bus. In
addition to specifying how multiple commands are to be received,
it also describes what to do in the event that an incomplete com-
mand is sent or a device is interrupted during the processing time
of a received message.

A set of device operational states has been defined to implement
the device message protocol of IEEE-488.2. These states are tabu-
lated in Table 3-3. Although there is very little chance for confusion
when a device receives a single byte from the bus, it may become
quite complicated when an incomplete or unterminated command
is sent or the device is interrupted. IEEE-488.2 defines what the
instrument or device must do under these circumstances.

Included in the device message protocol are specifications on the
order in which data bytes are sent and how devices on the bus
exchange data. A device cannot send data unless commanded to do
so. If a new command is received, the output queue is cleared and
that command is processed.

36 IEEE-488 GPIB Manual

Table 3-3 Definitions of device operational states.

STATE PURPOSE

IDLE Wait for messages

READ Reod ond execute messoges

QUERY Store responses to be sent

SEND Send responses

RESPONSE Complete sending response

DONE Finished sending response
DEADLOCK The device cannot buffer more data

UNTERMINATED
INTERRUPTED

The device haos ottempted to read on unterminated
message

The device wos interrupted by a new message while
sending o response

COMMON COMMAND SET

Since most instruments and devices used in an ATE system use
similar commands which perform identical functions, the IEEE-
488.2 document has specified a common set of commands which
all devices must use. This avoids the problem encountered with

IEEE- 488.1 in which devices from various manufacturers used a

different set of commands to enable functions and report status. The
following set of command groups ensures that all devices com-
municate uniformly:

1. System data. These commands are used to store or retrieve
information such as device identification, descriptions and
options, protected user data, and resource description trans-
fer. It is possible to determine the manufacturer and model

of the device under remote control. Serial number and

device options may also be reported, but this capability is
not mandatory. Protected user data and resource description
transfer are protected information which can be accessed by
the controller only when the protection mechanism, such as
a hidden switch, is disabled.

The |IEEE-488.2 Standard 37

Internal operations. These commands include such instru-
ment operations as resetting, self-calibrating, and self-test
of a GPIB device. An optional command enables the con-
troller to read the internal settings of the device. The self-
calibration feature of the unit must not require any local user
interaction and must not cause any conditions that would
violate the IEEE-488.1 or 488.2 standards. The device may
respond to a calibration query to indicate that the calibration
was carried out successfully and report any calibration
errors that may have occurred. The Reset command sets the
device-dependent functions to a known state and must not
affect the state of the IEEE- 488.1 interface, the Service
Request Enable register, or Standard Event Status Enable
register.

Status and event. These commands control the status struc-
ture of the GPIB device and provide a means to read and
enable events. Included in these commands are Clear, Event
Status Enable, Power-on Status, and Service Request
Enable. The Clear Status command clears the status register
and associated status data structures. The Power-on Status
Clear command controls the automatic clearing of the Ser-
vice Request Enable register, the Standard Event Status
Enable register, and the Parallel Poll Enable register. With
these registers cleared at power-on, the device is prevented
from requesting service while the power-on-clear flag is
true. The Service Request Enable command sets the Service
Request Enable register which determines what bits in the
Status byte will cause a Service Request from the device.
The Status Byte Query command reads the status byte,
causing the device to respond with an integer in the range
of 0 to 255. The binary equivalent of the integer represents
the contents of the status byte.

Synchronization. The operations of all devices within the
system are synchronized with these commands. Included is

38

IEEE-488 GPIB Manual

a Wait to Continue command which forces the device to
complete all previous commands and queries. The Opera-
tion Complete command tells the device to set bit 0 in the
Standard Event Status register when it completes all pending
operations.

SO | R |

omallal o 11 TL R R T L S s | PN <7
. Parallel poOiL. 11€ IESponse {0 a parauct pou is conironea by

these commands. It is also possible to obtain the same
information from any device, without the need for an actual
poll, by executing an Individual Status Query command.
This permits the user to determine what an individual device
would send on a parallel poll command.

. Device trigger. These commands enable a device to be

triggered and specify how it responds to the trigger message.
The Define Device Trigger command stores a sequence of
commands which the device will follow when the Group
Execute Trigger (GET) is received. The Define Device
Trigger query allows the user to review the command se-
quence which the device will follow upon receipt of the GET
comand.

. Controller. The control of the bus may be passed between

devices using the Pass Control Back command. This com-
mand tells the potential controller what address to pass
control back to. The command must be followed by a
number, 0 to 30, which is the address of the device that is to
become the next controller. It is also possible to pass control
to a device which contains both a primary and secondary
address. In this case the command is followed by two
numbers.

. Auto-configure. IEEE-488.2 defines an algorithm which

permits the user to automatically assign talk and listen
addresses to devices on the bus. Using this optional
capability, it is possible to physically assemble a test system
and allow the controller to query all devices to find out who
they are, and then assign addresses. The Accept Address

10.

The IEEE-488.2 Standard 39

command allows the controller to assign an address to each
configurable device on the bus. As part of the automatic
system configuration sequence, the Disable Listener Func-
tion command is used to cause a device to stop listening on
the bus until it receives a Device Clear (DCL) command.

Macros. These optional commands enable the user to define
new commands for the instrument under control. Macros
can be used to provide shorthand for complex commands
and reduce bus traffic. Other instruments can be emulated
using these commands. The Define Macro command is used
to assign a sequence of commands to a macro label. When
the device receives the macro label as a command, it ex-
ecutes the sequence of commands contained within the
macro. The macro label cannot be the same as a common
command or query but may be the same as a device-depend-
ent command. The Enable Macro command, followed by
number 0, disables all macros so that a device dependent
command which is the same as a macro can be executed. If
the Enable Macro command is followed by a number in the
range of -32767 to 32767, the macros will be enabled. The
user can determine if macros are enabled on a device by
sending the Enable Macro query. The Learn Macro query
causes the device to respond with the labels of all defined
macros, whether or not they are enabled. Macros may be
purged from a device by using the Purge Macros command.
Stored Settings. These commands are used to save the state
of the device under control, to be used at a later time. The
Save command stores the present state of the device in the
device’s memory. If there is more than one location in which
this data can be stored, the command is followed by a
number which designates the storage register to use. The
Recall command restores the state of the device, as stored
in its memory from a previous Save command. As with the
Save command, the Recall command must be followed by

40 IEEE-488 GPIB Manual

a number to specify the register from which the stored
settings are to be selected.

Note that all common commands are always sent in the datamode
of the bus (ATN false). IEEE-488.2 specifies that certain common
commands must be operational in a GPIB device, while others are
left up to the discretion of the instrument designer. Table 3-4
illustrates the sets of the common commands, organized by com-
mand group. A description of the common commands is in Appen-

dix E.

STATUS REPORTING

Status reporting defined by IEEE-488.2 builds upon and extends
the original specifications of the status byte of the 488.1 document.
Figure 3-2 illustrates the IEEE-488.2 status reporting model show-
ing the IEEE-488.1 status byte, which can be read by either a serial
poll or Status Byte Query. The 488.2 byte contains seven single-bit
summary messages from Status Data Structures which are registers
or queues. IEEE-488.1 defines the Recall Status Query (RSQ) bit,
and IEEE-488.2 defines the event status bit (ESB) and message
available bit (MAV). The user can enable a GPIB device to request
service, depending upon the state of the summary bits of the status
byte.

The status byte is transferred to the controller by means of the
IEEE-488.1 serial poll or an IEEE-488.2-defined common query.
Additionally, more common commands and queries are defined to
obtain information from the devices under remote control. An
overview of the IEEE-488.2 status reporting structure is shown in
Figure 3-2.

The Status Byte register, illustrated in Figure 3-3, was originally
defined by IEEE-488.1, which did not specify how the bits (other

The IEEE-488.2 Standard

41

Table 3-4 1EEE-488.2 comman commands, organized by command group.

MNEMONIC DISCRIPTION COMPLIANCE
AUTO CONFIGURE COMMANDS

* AAD Assign Address Opt.

« DLF Disable Listener Function Opt.
SYSTEM DATA COMMANDS

= [DN? Identification Query Reqd.

= DPT? Option Identification Query Opt.

« PUD Protected User Dota Opt.

« PUD? Protected User Doto Query Opt.

« RDT Resource Description Transfer Opt.

= RDT? Resource Description Tronsfer Query Opt.
INTERNAL OPERATION COMMANDS

« CAL Calibration Query Opt.

« LRN Learn Device Setup Query Opt.

« RST Reset Reqd.

« TST? Self-Test Query Reqd.
SYNCHRONIZATION COMMANDS

« OPC Operation Complete Reqd.

« DPC Operation Complete Query Reqd.

= WAI Wait to Complete Reqd.
MACRO COMMANDS

« DMC Define Macro Opt.

= EMC Encble Mocro Opt.

= EMC? Encble Macro Query Opt.

« GMC? Get Mocro Contents Query Opt.

« LMC? Learn Mocro Query Opt.

« PMC Purge Macros Opt.
PARALLEL POLL COMMANDS

« IST? Individual Status Query Reqd. if PP1

« PRE Pargllel Poll Encble Register Engble Reqd, if PPY

« PRE? Parollel Poll Enable Reg Encble Query Reqd. if PP1
STATUS & EVENT COMMANDS

« CLS Cleor Stotus Reqd.

= ESE Event Stoilus Encble Reqd.

« ESE? Cvent Stotus Encble Query Reqd.

« ESR? Event Stotus Register Query Reqd.

« PSC Power on Stotus Cleor Opt.

= PSC? Power on Stotus Clear Query Opt.

« SRE Service Request Enable Reqd.

« SRE? Service Request Enoble Query Reqd.

« ST8? Reod Stotus Byte Query Reqd.
DEVICE TRIGGER COMMANDS

« DOT Define Device Trigger Opt. if DT1

« DDT? Define Device Trigger Query Opt. if DT

« TRG Trigger Reqd. if DT
CONTROLLER COMMANDS

s PCB Poss Control Back Reqd. if Controller
STORED SETTINGS COMMANDS

« RCL Recoll Instrument Stote Opt.

« SAV Save Instrument State Opt.

42 IEEE-488 GPIB Manual

Error
t Controt
Operotion Complete

Device Deependent Error

R,

— Standord Event
Stotus Regist

Ij| Power On

)] User Request
& E

) Query Error

@4————9_ Command Error

Logical OR
®
8

Slondarg Event
(/18T [4T STZITT] Stotus Reg

(o).
A4
=

Output Queue

—— reod by Seriol Poll

ROS)
gs M (] Stotus Bit Register
‘ - recd by *STB?

<

Logical OR
|
L

S Standard Request
zl S 54T STZITT0] Encble Register

Figure 3-2 IEEE-488.2 status reporting model.

than RSQ) were to be set or cleared. This was left up to the
discretion of the equipment manufacturer.

IEEE-488.2 defines additional commands which allow the user
to access the status byte and associated data structures. Although a
serial poll will clear the RSQ bit, it will not clear the status byte,
which can be done by clearing the related status structures using
the *CLS command.

The bits defined by IEEE-488.2 are bits 4, 5, and 6. Bit 4 is the
message available bit (MAV) which is true if the output queue

The IEEE-488.2 Standard 43

Status Byle Register]
76543210

BIT NUMBER

Service Request Generglor

Service Request Indication

488.1
Service Request Function]

Ros | ‘sao

Figure 3-3 IEEE-488.2 status reporting structure.

contains data available to output. Bit 5, event status bit (ESB),
indicates if an enabled standard event has occurred. The master
summary status bit (MSS) is bit 6, which indicates if the device has
at least one condition to request service. Note that the MSS bit is
not considered part of the IEEE-488.1 status byte and will not be
sent in response to a serial poll. The RSQ bit, however, if set, will
be sent in a 488.1 serial poll.

Figure 3-4 illustrates the service request enabling operation. The
user may set bits in the Service Request Enable register (SRER),
corresponding to bits in the status byte. When a bit is set in the
SRER, it enables that bit in the status register to request service.

Event registers are used to remember that a predefined condition
changes in a device. IEEE-488.2 defines a command to read the
Standard Event Status registor, but if a unit has more than one event

44 |[EEE-488 GPIB Manual

- = - Stotus Summary Messoges ~

Service

Request lep—o-
Generation

I — read by Serial Poii
[Q] Stotus Bit Register

l ~— reod by «STB?
|

g,

Logical OR
]
L ;

S Stondord R.equest
z' ST SAT 32 11 T0) Enoble Register

Figure 3-4 Service request enabling operation.

register, there must be other device-dependent commands to access
the data stored within it. The bits, once set, cannot be cleared until
done so by either reading the register or using the Clear command
(*CLS). IEEE-488.2 defines the transition criteria which sets an
event bit true. This occurs when its condition changes from either
false to true or true to false.

A GPIB device may also provide Event Enable registers, which
are similar to the Service Request Enable register. Setting bits in
the Event Enable register permits bits in the Event register to be
summarized in the status byte.

The Standard Event Status register (SESR) is a specific applica-
tion of status reporting, and the IEEE-488.2 document specifies the
meaning of each bit of the SESR. Figure 3-5 depicts the Standard
Event Status register. The 8 bits of the SESR have been defined by
IEEE-488.2 as specific conditions which can be monitored and
reported back to the user upon request. These events are:

Bit 0, operation complete (OPC). This bit, generated in response
to the OPC command, is set when the device has completed its
current operations and is ready to accept a new command.

The |IEEE-488.2 Standard 45

1
S
t
u
- 2
S o
552 B¢
% L b o t O
§ § 5§85 §
y & ES’"’ >\g‘6
o w El.)-""-aL
3 £ 52338828
o DOuocmos
- tondard Event
L71615141 31211101 siatus Register
m 1
24 "Y
= s !
o2 @1
S 3
2=
Standard Event
TET 541312 |O|Stotus Register

Summary Message
Event Summary Bit (ESB)
(Bit 5 of Status Byte Register)

Figure 3-5 Standard event status register.

Bit 1, request control (RQC). This bit is used by a device to
indicate to the controller that it wants to become the active
controller on the bus.

Bit 2, query error (QYE). A query error, indicated by this bit,
occurs when an attempt to read data from the output queue is
made when no data is present or if some data was lost as in the
event of a queue overflow.

46 IEEE-488 GPIB Manual

Bit 3, device-dependent error (DDE). This bit is set when an error
in a device function occurs, such as improper execution of a
command due to an internal condition or malfunction of the
device.

Bit 4, execution error (EXE). An execution error occurs when
the command received by the device is not within its legal
capability, or is not consistent with its designed operation. It may
also occur when an internal condition prevents proper execution
of a valid command.

Bit 5, command error (CME). This bit indicates that the device
received acommand that was a syntax error (not defined by 488.2
standard), a semantic error such as a misspelled command, or a
command that the device does not implement. A group execute
trigger (GET) received inside a program message will also cause
a command error.

Bit 6, user request (URQ). This bit, set without regard to the
remote or iocal state of a device, will be set when the user has
activated a device defined control. Its purpose is to enable the
user to obtain the controller’s attention.

Bit 7, power on (PON). This bit indicates that the device’s power
source was turned off, then on, since the last time that thc SSER
was read.

All IEEE-488.2 devices have the Standard Event Status register
and may also contain other event registers. The SESR is written
with the Enable Status (*ESE) command and read with the Enable
Status query (*ESE?). The register is automatically cleared when
reading it via the ESE? query or sending the Clear command (CLS).
The device designer has the option of clearing the register with the

The IEEE-488.2 Standard 47

power-on transition and recording any transitions which occur
subsequently.

Queues are used to allow a device to report to the controller status
or other information in an orderly manner. Each queue has a
summary message bit which is set when the queue contains infor-
mation. The output queue of the IEEE-488.2 device uses the MAV
bit in the status byte to indicate that it contains available data. This
is a first-in, first-out (FIFO) queue, and it can be cleared only by a
488.1 Device Clear command, the Reset command, or by power on.

PARALLEL POLL

The parallel poll specified by the IEEE-488.1 document provided
a means to quickly ascertain the status of each of the devices on the
bus. IEEE-488.2 carries this capability further with an optional
means of generating and controlling a device’s response to a
parallel poll. Figure 3-6 illustrates the structure of the 488.2 parallel
poll data handling response. The structure of the parallel poll is the
same as the Event register, but its summary bit is sent in response
to a parallel poll and not in a status byte. This summary bit is
referred to as IST, or individual status local message. An Enable
register is provided to determine which events are summarized in
the ist.

The Individual Status Query (*IST?) allows the user to determine
the current state of the IST local message. This is the status that
would be sent in response to a parallel poll. The query permits
reading the response of the device without the need to perform an
actual parallel poll.

The Parallel Poll Enable Register command (*PRE) sets the bits
which determine what conditions are summarized in the IST. The
command must be followed by a number which, when converted
to binary, represents the bits set in the Parallel Poll Enable register.

48 IEEE-488 GPIB Manual

Device Defined Conditions — Summary Messoge ——

RREREN!]

Device Defined Conditlons @14T”|1 T11]10 9] 8] [_|ww| 3] 2[1] o] Stotus

&
“é l
2 1
A |

)

@&

Logicol OR

'O A&)A&

{2
\lt

Ve

£
Paraliel Poil

] [F[slsTs1 3] 2] 1]0] encbie Reqist

[is[14]13[12] 11]10f ¢

Individuol Stotus

Figure 3-6 1EEE-488.2 parallel poll data handling response.

The Parailel Poll Enable Register Query (*PRE?) allows the device
to respond with an integer in the range of 0 to 65535. This tells the
user whai bits are set in the PPER.

Chapter 4

GPIB Hardware

It is estimated that there are more than 4000 different instruments,
produced all over the world, which are capable of remote control
operation in an IEEE-488 interface system. It is beyond the scope
of this book to describe them all. Subsequent chapters will provide
information on hardware supplied by two of the major suppliers of
such instruments, Hewlett-Packard and Tektronix. The following
is a discussion of some of the types of GPIB hardware which is
produced by these and several other manufacturers to enhance the
operation of the interface system and make it more useful and easier
to use.

PC TO GPIB INTERFACES

In the early days of the IEEE-488 interface system the number of
manufacturers supplying controllers was very small, possibly being
limited to just those which also designed and sold the slave instru-
ments which were placed on the bus in automatic test systems. It
soon became obvious, however, that the proliferation of the per-

49

50 IEEE-488 GPIB Manual

sonal computer provided a very powerful tool with which to control
the various talkers and listeners on the bus. Most personal com-
puters could not speak the language or provide the necessary
commands for the bus, and many manufacturers of computer
ancillary equipment saw a need for IEEE-488 controller boards or
plug-in boxes which could link the instruments on the bus to the
computer. These are called PC interfaces. Today there are many
manufacturers which can supply these interface boards and boxes
which will allow almost any computer to speak the language of the
IEEE-488 interface system. Through the use of the PC interface
boards and plug-in boxes, it becames possible to select PC com-
puters in favor of dedicated controllers to provide the commands
on the bus.

There are two categories of PC interfaces: plug-in boards and
external interface “black boxes.” The former have proven to be far
more popular not only for their higher speed but for the fact that
external boxes are more cumbersome, usually attaching to the
computer via the RS-232 interface connection or the Centronics
compatible parallel port. A plug-in board results in a better, neater
system. However, the external boxes operated via the RS-232 port
of the computer are not restricted to the 20-meter limit placed on
IEEE-488 instrumentation. An RS-232 link between computer and
instrumentation allows as much as several hundred feet of
separation.

IEEE-488 MODEMS

It it is necessary to locate the controller a very great distance from
the rest of the interface system, it is possible to take advantage of
a modem-to-IEEE-488 converter, which allows control of GPIB
devices over virtually any distance if standard telephone lines exist
at both locations. With such a system the serial interface limits the
data transfer rate to several hundred kilobytes per second. If com-

GPIB Hardware 51

mands and data are sent relatively infrequently over the bus, this
will not be a severe limitation.

Modem-to-IEEE-488 converters are available from several sup-
pliers, one of which is 10 Tech, 23400 Aurora Road, Cleveland,
Ohio 44146. Their converter, MODEMA488, provides standard Bell
103/212A type 110, 300, or 1200 baud modem signals to the
IEEE-488 bus (Figure 4-1). Up to 14 GPIB devices may be con-
nected to the converter, and it connects to the telephone line by
means of a standard modular telephone connector. It operates in
two modes: as a controller of IEEE-488 instrumentation (using
commands and data received from a telephone line) and as a link
between a controller and telephone line.

Modem-to-IEEE-488 converters may also incorporate additional
features which can be very useful in a typical automatic test
equipment (ATE) setup. For example, it is possible for the con-
verter located at the remote location to automatically dial up the
host controller in the event that any of the slave devices sends out
a Service Request. The preprogrammed telephone number is stored
in a nonvolatile memory, and the converter will automatically
redial, if necessary, until the connection is made.

Modern modem-to-IEEE-488 converters are able to use simple,
high-level commands, similar to those used by Hewlett-Packard
controllers so that programming is no more difficult than what is
already being provided to the host controller. The use of a modem
allows ATE to be operated at remote locations without an operator
present. This could prove to be a very valuable cost-saving system.

EXPANDERS AND EXTENDERS

Extending the maximum permissible distance between the control-
ler and most distant device can also be implemented through the
use of IEEE-488 bus extenders and expanders. An extender is a
device which is placed between the host controller and the rest of

52 IEEE-488 GPIB Manual

Figure 4-1 Modem to IEEE-488 interface. Courtesy of 10 Tech.

the bus and is essentially transparent, or electrically invisible, to the
system. Its function is to provide low-impedance driving power to
the bus to handle the additional capacitance and inductance of bus
cabling when more than the recommended 2-meter distance be-
tween devices is required. The function of an expander is slightly
different; it is used when, in addition to the controlier, more than
14 devices must be placed on the line. The functions of these two
types of equipment are very similar, and manufacturers of such
devices wiil often suppiy one unit to accompiish both tasks.

The use of an extender or expander is not limited to increasing
the distance between devices or to enable more than 14 devices to
be driven. For systems that are highly sensitive or need absolute
isolation from power lines and other sources of interference, fiber
optic data links are available. These are capable of extending the

GPIB Hardware 53

interface bus system as much as 1000 meters between controller
and acceptors, while supplying very high electrical isolation and
improved immunity from data transmission errors, which may be
caused by any type of electrical interference. Fiber optic extenders
are essentially transparent to the IEEE-488 interface system, but
may require special techniques when performing certain opera-
tions. For example, speed requirements of the parallel poll function
may preclude operation through a fiber optic link. To perform such
an operation it is necessary for the controller to perform two polls.
The data obtained from the first poll is discarded, and the second
poll provides the desired report from the devices on the bus.
There are many manufacturers of expanders and extenders. One
of these is the Hewlett-Packard Company, Palo Alto, California,
which manufactures model HP 37204 B multipoint HB-IB Extender
(Figure 4-2). This device allows the normal 2-meter separation
between GPIB devices to be extended to as much as 1250 meters,
while allowing high-speed data rates. A fiber optic option is avail-
able. Multipoint capability means up to 30 remote sites can be daisy
chained together, using only one 37204 A extender at each site.

GPIB-to-RS-232 CONVERTERS

Since most computers manufactured today include the standard
RS-232 port, it is not surprising that manufacturers of computer-to-
IEEE-488 interfaces provide the necessary hardware to place these
computers on the bus using that port. One such manufacturer is
National Instruments, 12109 Technology Boulevard, Austin, Texas
78727 (Figure 4-3). Their RS-232-to-IEEE-488 interface, GPIB-
232CV, consists of a stand-alone box which is microprocessor
controlled and tailored for use as a RS-232-to-IEEE-488 converter.
Its transparent conversion of data between the computer and GPIB
bus requires no special commands or control codes, which makes
it easy to implement into a system. Since data transfer between the

54 IEEE-488 GPIB Manuai

Figure 4-2

Figure 4-3

‘GP1B-232CV
IEEE-488 ¢ RS-232 CONVERTER

® ® ® ® ®

POWER READY TALK LISTEN BUSY FULL

W
(28]

o IEEE-488 converter. Courtesy of National Instruments

GPIB Hardware 55

bus and RS-232 port is bidirectional, this converter is also capable
of converting any device which contains an RS-232 port into an
IEEE-488 instrument.

As with many other types of IEEE-488 hardware, the National
RS-232-t0-IEEE-488 converter is not limited by the 20-meter
restriction of maximum length between controller and interface
devices, it allows relatively long cables to be used. Additional
features include a built-in random access memory (RAM), ofupto
256K bytes, to allow spooling of data during device operations.

PARALLEL IEEE-488 CONVERTER

A parallel IEEE-488 converter allows any unit which contains a
Centronics parallel port to be used as a GPIB device. This type of
converter is ™0t as popular as the RS-232 device because a parallel
port is output ¢nly, and it is generally used on listen-only devices
such as printers or readouts. Manufacturers of parallel port con-
verters have designed their product to be transparent (able to
convert data in either direction) so that one such unit can be used
either to connect a GPIB controller to a Centronics device or
interface the Centronics port to the IEEE-488 bus. A buffer within
the converter is able to store data while waiting for slower
peripheral units to respond, thus freeing the host computer for the
next operation. This type of converter is usually supplied as a
stand-alone component which connects the JEEE-488 bus to the
Centronics device with a pair of connectors.

ICS Electronics Corporation, 2185 Old Oakland Road, San Jose,
California 95131, supplies model 4833 IEEE-488 parallel interface
(Figure 4-4). This unit is a general-purpose, fully programmable
unit which is available in both single- and dual-channel configura-
tions. It is both a talker and listener in the GPIB system. As a talker
it accepts parallel data (BCD or binary) and converts it to 8-bit
characters for transmission on the bus. As a listener it receives data

56 IEEE-488 GPIB Manual

Figure 4-4 IEEE-488 parallel data interface. Courtesy of ICS Electronics Corp.

from the bus and converts it to parallel words for use by a parallel
input device.

DATA BUFFERS

 a

he IEEE-488 interface system is designed with a handshake
protocol, it is necessary for the communications on the bus to
proceed at a rate which is determined by the slowest listener or
talker on the line. This can lead to a very inefficient use of time,
since faster devices on the bus will be waiting as the slower ones
respond. Consider, for example, a slow printer. The host computer,
and all devices on the bus, must wait until the printer has completed
its task before the next communication can take place. Such a
situation is readily improved through the use of an IEEE-488 data
buffer, which increases the efficiency of the interface system by
isolating a slow device.

GPIB Hardware 57

An IEEE-488 data buffer has two ports. One is connected to the
interface system and the other to the slow device which is to be
isolated. The buffer receives the data on the first port, accepts it,
and allows the bus to proceed with its normal operation. While this
is happening, the received data is stored in memory as it is spooled
to the device connected to the second port. Since the buffer is able
to listen and talk on both ports, it is transparent to the bus. Through
the use of a data buffer, it is commonly possible to improve the
operating speed of a system by a factor of 10 or more.

IEEE-488-t0-DIGITAL 1I/O INTERFACE

Many ATE systems have requirements which cannot be easily
implemented by the use of stock components and must be custom
designed to perform a dedicated task. One of the most useful
categories of GPIB hardware which is commonly used in such
situations is the IEEE-488-to-digital I/O interface, produced in
several configurations by many suppliers. One such manufacturer
is Seitz Technical Products, Inc., Avondale, PA 19311.

Seitz model 6450 IEEE-488-to-digital I/0 interface consists of a
stand-alone unit or a printed circuit board assembly which contains
the standard GPIB interface connector (Figure 4-5). This com-
ponent is both a talker and listener so that data can flow in both
directions between the interface and the rest of the IEEE-488
system.

Although the interface hardware can send and receive data on the
eight data I/O lines of the bus, its communications with the system
is not limited to just 8 bits. Through the use of software commands,
interface units are usually able to provide 40 or more data lines to
the outside world which can be designated as input, output, or a
combination of both. Other useful features can include additional
functions on the data 1/O lines, such as trigger output, status input,
service request input, data latch input, clear, and inhibit.

58 IEEE-488 GPIB Manual

Figure 4-5 IEEE-488 to digital I/O interface. Courtesy of Seitz Technical
Products, Inc.

functions on the data I/0 lines, such as trigger output, status input,
service request input, data latch input, clear, and inhibit.

A data 1/0 interface accessory allows the system designer to
custom design an ATE system. Through the use of software com-
mands, any data generated by the system can be brought out to
peripheral devices and used in any way that is desired.

A standard Seitz digital interface allows 8 bits of data to be
received from the bus when in listener function, and can transmit
an 8-bit word when addressed to talk. The listen function provides
two output ports: standard TTL/Tri-state and a set of eight power
drivers. The power drivers consist of a set of open collector tran-
sistors which are rated at 30 volts and can sink up to 1 ampere of
current.

If more than 8 bits are required in the listen function, an optional
accessory (640 Option Module) is available. This accessory con-
sists of a supplementary printed circuit board which contains a set
of eight registers, and is designed to be conveniently mounted to
the motherboard.

GPIB Hardware 59

The Seitz 6450 digital 10 interface accepts all 256 8-bit codes
and does not recognize delimeter characters such as carriage return
and line feed. For this reason these characters must be suppressed
for proper data transfer unless they are desired. If not, they will
appear on the output port as data.

Chapter 5

GPIB Devices and
Functions

This chapter will describe some of the types of devices which are
available with IEEE-488 implementation and will provide informa-
tion on the various interface functions of which these instruments
are capable. Since there are over 4000 instruments and devices
produced with such capability, it is not possible to describe every
type that is currently available. The best source of this information
is from the manufacturers of GPIB devices; some of the major
suppliers are covered in this chapter. Every manufacturer of
electronic and electrical instrumentation knows that in order to be
competitive in the marketplace the product line must be imple-
mented for use in the GPIB system. Any instrument produced
without such capability will probably have a counterpart, available
from another source, which does. A search through the full-line
catalogs of the manufacturers who produce the type of device of
interest will usually resultin finding an IEEE-488 instrument which
will fill the desired requirements.

61

62 IEEE-488 GPIB Manuai

The following information represents only a very minute portion
of the spectrum of IEEE-488 capable instruments, but it does show
what can be obtained for a general automatic test system using the
GPIB interface.

DIGITAL VOLTMETERS

Voltmeters represent one of the most basic test instruments, and it
is not surprising that there is a vast selection from which to choose.
A basic digital voltmeter with IEEE-488 capability can be obtained
for substantially less than $1000 if a 4 1/2-digit instrument with
limited GPIB capability will perform the required functions in the
ATE system. A typical low cost instrument (about $674) is the
Kiethley model 175/1753 autoranging DMM (Figure 5-1), which
probably is one of the lowest cost GPIB digital voltmeters on the
market. It can be operated in an ATE system as both a listener and
a talker. The parameters of this meter which can be programmed
under remote control are range, relative measurement, dB, EOI,
trigger, SRQ, status, output tormat, and terminator. In addition 1t is
possible to perform a calibration of the instrument under GPIB
operation if the required reference and software are provided. It is
not possible to select the meter function under remote control; this
must be done manually.

A typical command to program the meter in HP-BASIC, assum-
ing an address of 5, is:

This will set the meter function, range, and trigger mode. The X
at the end of the command is used as a command terminator. To set
the meter to talk function so that the controller can store the meter
reading, the command in HP-BASIC is:

GPIB Devices and Functions 63

Figure 5-1. Keithley model 175 is a low cost DVM available with IEEE-488
compatibility. Courtesy of Keithley Instruments, Inc.

ENTER 705 ; V

The next available reading after this command has been received
by the meter will be transmitted on the bus and stored in variable
V in the controller memory, where it can be processed by further
BASIC commands in the software.

The Keithly model 175/1753 is implemented for the following
interface functions: SH1, AH1, T5, TEQ, L4, LEO, SR1, RL2, PPO,
DC1, DT1, CO, and E1. A full discussion of the various subsets of
interface functions appears later in this chapter.

A full-function digital voltmeter (about $800) is the Fluke model
8840A (Figure 5-2), manufactured by John Fluke Mfg. Co. Inc.,
P.O. Box C9090, Everett, WA 98206. This is a first-class instru-
ment which has a very respectable 0.005 percent dc accuracy

64 IEEE-488 GPiB Manuai

Figure 5-2. High performance DVM for IEEE-488 systems. Courtesy of John
Fluke Company.

specification and can equal or better the performance of other
instruments which sell at higher prices. The 8840A is a 5 1/2-digit
microprocessor controlled instrument which is available with
IEEE-488 capability, and it can be calibrated while under remote
control (using the proper voltage reference and software).

Under GPIB operation there is complete control of functions,
ranges, and reading rates. This DVM supports the following IEEE-
488 interface functions: SH1, AH1, TS, L4, SR1.RL1, DC1, DT1,
E1, PPO, and CO. Its GPIB address is switch selectable by means
of five switches at the rear panel. A sixth switch, when set to the
ON position, forces the 8840 to assume a talk only mode in which
it will ignore addressed commands from the bus and transmit
readings that it measures in accordance with the front panel control
settings.

A typical command string that might be sent from a Fluke 1722A
controller is illustrated in Figure 5-3. The string configures the
8840A and triggers a reading. The PRINT command from the
controller automatically sends terminators (CR, LF, and/or EOI) to
the 8840A at the end of the command string.

GPIB Devices and Functions 65

PRINT @3, “s F3 R St T2 7
IEEE-488 BUS ADDRESS — u | | | | | |
e ey — — b
SELECTS THE 2 WIREKQ FUNCTION — — =] | ! | |
SELECTS THE 2000 RANGE — — — — — — J I | |

SELECTS THE MEDIUM READING RATE —— — = =— — — I I l

TRIGGERS A READING — — — — — — — — — — _—

SELECTS THE EXTERNAL TRIGGER MODE
(REAR PANEL TRIGGER DISABLED -

- - - - 1

Figure 5-3. Typical command string sent to the Fluke 8840A DVM from the
1722A controller.

OSCILLOSCOPES

It might seem at first glance that the presence of an oscilloscope in
an automatic test system would require a technician to evaluate the
display. This may be true under certain test setups, but modern
GPIB oscilloscopes can talk back to the controller with a digitized
message that contains waveform information. Using a graphics
printer or plotter is all that is necessary to provide a hard copy of a
waveform that can be analyzed at a later time. It would also be
possible, using the graphics capability of the controller (if so
equipped), to reproduce the waveform on the controller CRT or
other display peripheral.

Although a top-of-the-line high-frequency digital oscilloscope
does not come cheap, it is worth noting that the Tektronix model
2430 dual trace, 150 megahertz storage oscilloscope (Figure 5-4)

66 IEEE-488 GPIB Manual

Figure 5-4. Tektronix model 2430A digitizing oscilloscope. Courtesy of
Tektronix, Inc.

is a state-of-the-art instrument which will provide sufficient
capability for almost any ATE system.

GPIB programming capability is standard with full talk and listen
modes. The instrument can transmit and receive waveform data at
a transfer rate of 140 kilobytes per second. This oscilloscope is fully
implemented for IEEE-488 interface functions SH1, AH1, T5, L3,
SR1, RL1, DC1, DTO, PPO, and CO.

GPIB Devices and Functions 67

Figure 5-5. Wavetek model 278 function generator. Courtesy of Wavetek, Inc.

SIGNAL GENERATORS

There is a vast array of signal generators available with GPIB
capability. These include audio, pulse, RF, and function generators,
as well as specialty products which are aimed at a specific portion
of the ATE systems which require GPIB capability. One manufac-
turer of a wide selection of high quality IEEE-488-implemented
signal generators is Wavetek, 9045 Balboa Avenue, San Diego,
California 92123.

The Wavetek model 278 synthesized function generator (Figure
5-5) is a good example of a general-purpose instrument which can
be used in a wide range of applications. This instrument can
generate precise sine, triangle, and square waves over an 0.01 to 12
megahertz frequency range, and in synthesized mode the frequency

68 IEEE-488 GPIB Manual

accuracy is five parts per million (0.0005 percent). It can operate
in continuous, triggered, gated, and burst modes with output levels
to 29 volts peak-to-peak. Under GPIB control model 278 is imple-
mented for interface subsets SH1, TEQ, T6, RL1, AH1, L4, LEO,
PPO, CO, SR1, DC1, and E2. Its GPIB address can be user selected
by means of an internal set of switches or by the front panel GPIB
address key. Verification of the address can be accomplished by
pressing the ADR key on the front panel.

Wavetek model 278 will respond to an SRQ serial poll with a
data byte which will indicate such problems as a blown fuse,
program error, low battery level (for memory backup), and refer-
ence not locked to the external reference signal.

The 278 can be supplied with a memory retention battery so that
up to 100 complete front panel settings can be stored. This permits
power-up under GPIB control with any desired setting. Program
commands to control the unit are straightforward and simple,
usually consisting of a single letter followed by a number. For
example, the command COF1000 will direct the 278 to produce a
sine wave of 1000 hertz. In this command CO is used to set the
generator to sine wave function and the letter F, foliowed by 1000,
sets the frequency to 1 kilohertz. Once the unit is powered up under
the desired default settings, it is necessary only to transmit on the
bus each new setting as required.

UNIVERSAL COUNTERS

Unless there is a need for frequency measurement above the VHF
range, a good choice for a frequency counter with IEEE-488
capability is the model 5334B (Figure 5-6) manufactured by the
Hewlett-Packard Company, 3155 Porter Drive, Palo Alto, CA
94304. This is a general-purpose counter which has a range of 100
megahertz. It provides a nine-digit display and includes the usual
functions of a universal counter such as period measurement and

GPIB Devices and Functions 69

Figure 3-6. Two high-performance frequency counters available from
Hewlett- Packard Co. Courtesy of Hewlett-Packard Co.

ratio A/B. The GPIB interface functions which this instrument
supports are SH1, T3, TEO, L4, LEO, SR1, RL1, PP0, DC1, CO,
and E2.

PROGRAMMABLE DC POWER SUPPLIES

All automatic test systems require a source of power (ac or dc) to
operate the unit under test, and many times it is necessary to vary
the input voltage to a unit to determine how it will function under
low and high line voltage levels. In addition to this it may be
desirable to check the response of a unit when it is subjected to
voltage spikes and surges. These types of tests are readily attainable
through the use of GPIB controlled programmable power supplies.
A check through the full line catalog of any of the many power

70 IEEE-488 GPiB Manuai

Figure 5-7. Typical programmable dc power supply. Courtesy of Lambda
Electronics.

supply manufacturers will reveal what remote programmable units
are available.

One such manufacturer of GPIB controllable dc power supplies
is Lambda Electronics, 515 Broad Hollow Road, Melville, NY
11747. Their IEEE-488 programmable power system is a modular
design which provides the communication link between the con-
troller and up to six separate power supplies (Figure 5-7). Both
output voltage and current limit can be programmed using one
primary GBIB address and six secondary addresses. An additional
feature, called Confidence Check, enables the GPIB system to
perform an actual measurement of the output voltage or current
limit of up to five power supplies. (The installation of the Con-
fidence Check feature uses up one interface card slot in the Lambda

GPIB Devices and Functions 71

power system and requires the use of a customer supplied GPIB
controlled digital voltmeter).

Accuracy and resolution of the programmed output voltage of
the power supplies is equal to 0.1 percent of full-scale, and the
current limit can be set to within 2 percent of the programmed value
plus 1 percent of full scale.

The Lambda IEEE-488 system is capable of a listen-only func-
tion. Confidence Check is accomplished through the use of an
external GPIB voltmeter which is switched to any one of five power
supplies by means of relays located on the Confidence Check card.

To program the output voltage of the Lambda programmable
power supply, it is necessary to specify the primary address, which
is user selectable by means of a 5-bit switch located on the rear
panel, and the secondary address (1 to 6), which is hard wired into
the unit. The voltage level is programmed by a command which
consists of the letter P followed by four numbers which represent
the percentage of full-scale voltage output in four significant digits.

Programming the desired current limit the next two values of the
command consists of two numbers which represent the percentage
of full scale current in two significant digits. The letter E must
terminate all programming commands since it is the command
string delimiter.

Assuming a primary address of 6 and a secondary address of 2,
a typical command from a Fluke 1722A controller might be

PRINT @ 6:2, "P750050E"

This will program the Lambda power supply to deliver 75 percent
of its full-scale output voltage with a current limit of 50 percent of
maximum.

Confidence Check programming instructs the relays in the power
supply to connect the desired output to the externally supplied
voltmeter. The command for this check in the unit of the above

72 IEEE-488 GPIB Manual

example (assuming the Confidence Check card was inserted at
location 1 secondary address) would be

PRINT @ 6:1, "CV2E"

This will provide monitoring capability of the output voltage of
the power supply at location 2. To monitor current instead of
voltage, the letter V in the command would be substituted by an I.
Note that additional software commands are required to instruct the
digital meter to report its reading to the controller to verify that the
power supply has indeed responded properly to its command.

PROGRAMMABLE AC POWER SUPPLIES

Since many products which are tested with an ATE system are
powered by an ac power source, GPIB controlled ac power is often
used to provide a thorough test of such products under conditions
of low line, high line, frequency variations, and power surges and
transients.

To simulate such actual line voltage conditions for a unit under
test, there are available ac power supplies which are capable of
being programmed via the GPIB bus in an ATE setup. One supplier
of such products is Behlman Engineering, 1142 Mark Avenue,
Carpinteria, CA 93013. Their series of programmable ac power
sources named Fiskars (Figure 5-8) is available in power ratings
from 100 VA to 54 kVA, one, two, and three phase. Such
parameters as output voltage, frequency, phase-to-phase angle (on
multiphase units), and current limit can be programmed and con-
trolled on the IEEE-488 bus. Fiskars programmable ac power
sources are implemented in the following interface subsets: AH1,
SH1, T6, TEQ, L4, LEO, SR1, RL1, PP0, DCO, DTO, and CO.

GPIB Devices and Functions 73

Figure 5-8. Picture of Behlman power supply. Courtesy of Behlman Engineer-
ing Co,

RELAY SWITCHERS

One of the most versatile GPIB devices which can be used to
perform a range of functions is the relay switcher, such as manufac-
tured by ICS Electronics Corporation, 2185 Old Oakland Road, San
Jose, California 95131. Their model 4874B Relay Output Interface
(Figure 5-9) provides up to 24-SPST low- or high-level relay
contacts which can be controlled by software commands on the
IEEE-488 bus. Relay contacts can be controlled individually or in
a complete set. The test engineer can use a unit such as this to
provide interconnections as required between various instruments
and devices in an ATE system, all under GPIB control.
Programming commands to open or close any or all of the relays
can be accomplished in one command string. The command for any
given relay is the letter R, followed by the relay number, and then

the digit 1 for close or 0 for open. A typical command, using
HP-BASIC, is:

74 IEEE-488 GPIB Manual

Figure 5-9. ICS model 4874B relay switcher. Courtesy of ICS Electronics
Corp.

OUTPUT 704 ; "R140R151"

This command, assuming the 4874B has an address of 4, forces
relay 14 to open and relay 15 to close. Since the relay switcher
contains 24 relays, it is possible that some commands can be very
cumbersome if many relays need to be controlied. One way to solve
this problem when a given set of relays must be commanded to a
certain configuration many times in a program is to assign to a string
variable, such as R$, the complete instruction set. In this way the
software need only contain the statement OUTPUT 704 ; R$ to
accomplish the same task.

An additional feature of this device is the capability to provide
BCD interface on the bus. It will accept parallel data on 24 lines, 1
bit per line, and, as a talker, it can transmit this data on the GPIB
interface system. This permits up to six digits of information to be
sent on the bus from any source supplying BCD data or any other

GPIB Devices and Functions 75

type of data on 24 lines. Model 4874B is implemented for interface
functions SH1, AH1, TES, LE3, SR1, PP1, RLO, DC1, DT1, E1,
and CO.

INTERFACE FUNCTIONS AND SUBSETS

Most manufacturers of instruments and devices which are GPIB
controllable list the various interface functions which are imple-
mented in the product. These capabilities can usually be found in
the data sheets for the product, and in some cases they are marked
on the instrument itself (usually near the GPIB connector). Al-
though there are just 11 basic interface functions, the various
subsets of these functions number much more than this. Table 5-1
illustrates the various subsets of each of the basic interface func-
tions.

In Table 5-1 under the talker and listener functions, extended
talker and extended listener refer to those devices which are capable
of accepting secondary address commands. Additionally, MTA and
MLA are the mnemonic for “my talk address” and “my listen
address.” When an addressed device receives the command to talk
or listen, the command is referred to as MTA or MLA.

Although only six subsets of the controller function are listed, it
should be noted that the IEEE-488 document specifies a total of 29
controller subsets. Those tabulated in Table 5-1 are the most
significant levels.

When selecting instruments and devices to be used in a GPIB
system, it is important to note the interface function subsets of
which any product of interest is capable. These are specified by the
manufacturer of the device who has determined what functions (and
at what level) are required for the product to perform its desired
capabilities. It is entirely possible that one or more desired interface
functions are completely absent in a unit under consideration.
Should this occur, it will be necessary to seek out a different product

76 IEEE-488 GPIB Manual

Table 5-1. Table of interface functions and subsets.

Interface Function Basic Code

Capability Code

Source Handshake
Acceptor Handshake

Talker (extended talker)

Listener (extended listener)

Service Request

Remote/Local

Parallel poll

Device clear

Device trigger

Driver electronics

SH
AH

T(TE)

L(LE)

SR

RL

PP

DC

DT

SHO — No capability

SH1 — Full capability

AHO — No capability

AH1 — Full capability

T(TE)0 — No capability

T(TE)1 — Basic talker, serial poll, talk only

T(TE)2 — Basic talker, serial poll

T(TE)3 — Basic talker, talk only

T(TE)4 — Basic talker

T(TE)S — Basic talker, serial poll, talk only,
unaddresses if MLA

T(TE)6 — Basic talker, serial poll,
unaddresses if MLA

T{TE)7 — Basic talker, talk only,
unaddresses if MLA

T(TE)8 — Basic talker, unaddresses if MLA

L(LE)0 — No capability

L(LE)1 — Basic listener, listen only

L(LE)2 — Basic listener

L(LE)3 — Basic listener, Listen only,
unaddresses if MTA

L(LE)4 — Basic listener, unaddresses if
MTA

SRO — No capability

SR1 — Full capability

RLO — No capability

RLI — Fuil capability

RL2 — No local lockout

PP0 — No capability

PP1 — Remote configuration

PPZ — Locai coniiguraiion

DCO — No capability

DC1 — Full capability

DC2 — Omitselective device clear

DTO — No capability

DT1 — Fuli capability

E1 — Open collector, 250 Kilobytes/sec max

E2 — Tri-state. 1 Megabyte/sec max

GPIB Devices and Functions 77

Table 5-1. (continued)

Interface Function Basic Code Capability Code

Controller C CO0 — No capability

C1 — System controller

C2 — Send IFC and take charge

C3 — Send REN

C4 — Respond to service request

C5 — Send interface messages, receive,
control pass control to self, parallel poll,
take control synchronously

or work around the deficiency through the use of programming
techniques (if possible).

One should be aware that it is possible that one instrument in a
GPIB system may not be compatible with others if they each do not
share the same desired interface function. For example, if it is
necessary for local control of all instruments in a system to be
locked out to prevent tampering by personnel, but the power supply
feeding the unit under test does not have the local lockout function,
the test engineer would not be able to implement this feature to
cover all instruments in the ATE system.

PROGRAMMING REQUIREMENTS

When a GPIB interface system is fully assembled, complete with
controller, it is virtually useless until the program or software is
written and loaded into the controller’s memory. The program will
contain the instructions which will cause each and every device on
the bus to perform the desired task.

78 IEEE-488 GPIB Manual

Table 5-2. Command Configuration.

Hewlett Packard 85B (BASIC) OUTPUT 701; "F1R3"

Hewlett Packard 9825 (HPL) wrt 701;"F1R3"

Fluke 1722A BASIC PRINT @ 1%, "F1R3"

Tektronix 4050 BASIC PRINT € 1: "F1R3"

Tektronix 4041 BASIC (high level) PRINT #1: "F1R3"

Tektronix 4041 BASIC (low level) Wbyte atn(unt,unl,mta, 1), "FIR3"

In order to properly write the program, the test engineer must be
familiar with two major programming categories: the language the
controller “speaks,” and the correct syntax for each and every
instrument or device under control.

Because of the large selection of controllers and slave instru-
ments which are available for GPIB use, there is also a wide range
of software commands that must be implemented to produce the
desired performance in an ATE system. Unfortunately each dif-
terent manufacturer has developed its own GPIB language, and
more often than not there is no correlation between the products
from one company to another. A message to a device under IEEE-
488 control is composed of at least three parts: the output command
from the controller, the address of the intended recipient, and the
message itself. Table 5-2 illustrates how the identical command,
F1R3, must be sent by six different controllers.

In general, a software program for automatic test equipment
using the GPIB interface system may be written as a series of
commands which follow a logical sequence in accordance with the
requirements of the test. For example, if an audio amplifier is the
unit under test, the ATE system might be composed of an audio
signal generator, distortion analyzer, digital voltmeter, oscillo-
scope, and relay switcher controlling several different load resis-
tances.

GPIB Devices and Functions 79

Instructions for performing the test are presented on the control-
ler monitor so that the test technician is prompted in the proper
connection of all parts of the test setup. When the test is started by
a manual entry into the controller keyboard by the technician, the
system is initialized by commands from the controller. Such things
as setting the instrument controls to the proper setting and applying
the desired load resistance to the output of the amplifier are auto-
matically accomplished.

At this point the test would begin as the signal generator was set
to each of several different frequencies and amplitudes. For each
of these inputs to the amplifier under test the distortion analyzer
would be instructed to take a distortion reading and then transmit
that information to the controller for storage. For each frequency
setting the oscilloscope could be instructed to send waveform data
back to the controller for reproduction at a later time. This entire
sequence could then be repeated for other values of load resistance
as the relay switcher was instructed to connect new values to the
output of the amplifier.

When the test was completed, the results could then be printed
on a test data sheet, even including the output waveform as part of
the hard copy of the test. Test specifications such as allowable limits
of distortion and frequency response could be included in the
software so that a Pass or Fail flag would be imprinted in the hard
copy of the test data sheet.

The entire test sequence, briefly described above, is simply a
series of commands which the controller would send to the various
instruments of the system. It is up to the test engineer to write the
program in the proper sequence and then debug it so that the final
result is the exact test which is required for the unit under test.

When writing the program for any test sequence, the programmer
must be familiar with the proper syntax not only for the controller
but for each instrument and device on the bus as well. If a particular
test involves many different types of devices, it could be quite time
consuming to write and debug a program. Because all commands

80 IEEE-488 GPIB Manual

on the bus not only must be made in the proper sequence but must
be absolutely correct in syntax, one may find that writing a software
program for the IEEE-488 interface system is not as easy as it
sounds.

This problem has been all but eliminated by several companies
which have developed specialized software programs for the IEEE-
488 bus. One such source of this material is Wavetek, in a product
called Wavetest which provides syntax free programming for a
wide selection of selected GPIB instruments.

Wavetest is a new generation of GPIB software which allows a
PC/AT computer to be used as a powerful controller on the IEEE-
488 bus. It contains an instrument library of over 50 general purpose
instruments manufactured by such companies as Hewlett-Packard,
Tektronix, John Fluke Company, and others, and it simulates the
actual front panel of each instrument on an interactive “soft panel.”

Each library contains the look-up table of a particular
instrument’s GPIB syntax and commands, together with the cor-
responding English language descriptions. In this way it is not
necessary that the test engineer write the required commands in the
format specified by the instrument manufacturer. All that is neces-
sary is to literally tell the controller what kind of test should be run,
what instruments to use, and what to do with the data. Wavetest
does the rest by writing the program codes and GPIB commands
for the entire set of instruments in the test setup.

COMMUNICATIONS FORMAT

Although the IEEE-488 document does not mandate any particular
language or commands when sending data to the active listeners on
the bus, device dependent commands sent from the active talker to
the addressed listeners have been somewhat standardized through

GPIB Devices and Functions 81

the experience of companies such as Hewlett-Packard in the design
of GPIB instruments. This has resulted in a generalized code of
format structure when the bus is in the DATA mode (ATN false).

The format for programming data strings consists of a set of
alphanumeric characters as illustrated in Table 5-2. In this format
system one or more alpha characters identifies a particular
parameter, and a numeric sequence immediately following sets the
numeric value. It is possible to set every parameter to the desired
values by means of transmitting one string. Each device on the bus,
however, will have its own unique string to define the required
operation mode or status of the instrument.

In Table 5-2 the string “FIR3” is a typical command which
contains sufficient information to set a digital voltmeter to the
desired function and range. Note that it usually is not necessary to
specify every parameter of which an instrument is capable. Most
manufacturers of GPIB instruments include a default feature which
automatically sets the device to a standard form of operation when
any particular parameter is not specifically called out in the
software commands. The default condition of any parameter is
usually selected by the manufacturer of the instrument or device
and is a commonly used setting or mode which is enabled at
power-up of the instrument.

The original IEEE-488 document did not include guidelines for
preferred syntax and format but through continued work in this area
a new document, IEEE-728-1982, was created. This is entitled,
“Recommended Practice for Code and Format Conventions for
IEEE Standard 488.” It contains guidelines (and not absolute stand-
ards) to increase the usability of equipment from different vendors.
Through the use of standard syntax and formats the role of the
software engineer is greatly eased. A similar document, [EC 625-2,
contains similar information to IEEE-728 but it is not identical. A
graphical depiction of the new documentation is illustrated in
Figure 5-10.

82 IEEE-488 GPIB Manual

GPIB DEVICE GPIB DEVICE

DEVICE : INTERFACE INTERFACE

FUNCTIONS | FUNCTIONS \EEE—488 BUS FUNCTIONS
! STRUCTURE
1
H < INTERFACE MESSAGES >
]
; ' |
1

oEVCE
FUNCTIONS

A | LI\
DEVICE DEPENDENT MESSAGES
T T
1 1
| 1
1 1
i 1
| IEEE—488.1 l
| IEC 625-1 |

IEEE-728-1982
{EC 825.2

IEEE-728-1982
EC 6252

Figure 5-10. 1EC 625-2 depiction.

The original IEEE-488 document (now called IEEE-488.1 did
not specifically define a data format or coding protocol. It simply
stated that binary, BCD, or any standard alphanumeric code may
be used. This allowed the designers of early GPIB systems to
arbitrarily select any type of format which was convenient for them
to use. During the early years the GPIB system solved many
problems, but also created others when the format used by one
manufacturer of automatic test equipment was entirely different
from that of another. It soon became apparent that some type of
communications format had to be specified. This problem was
taken care of with the introduction of the IEEE-488.2 document,
which defined a set of data codes and formats for everything from
decimal numbers to arbitrary strings of characters.

Although IEEE-488.1 used the ASCII 7-bit code to document the
interface commands, some GPIB devices used different forms of
binary coding for information exchange. This deficiency was cor-
rected in IEEE-488.2, which specifies three sets of codes: ASCII 7
bit for alphanumerics, binary 8-bit integer code, and binary floating

GPIB Devices and Functions 83

point. A description of the floating point format appears in Appen-
dix F.

By using the three codes specified in the IEEE-488.2 document,
it is possible to define data formats for decimal, octal, and
hexadecimal integers. Additionally, decimal floating point num-
bers, strings, character strings, and arbitrary strings can be defined.

Chapter 6

Programming the
IEEE-488 GPIB

OVERVIEW

The IEEE-488 interface system has been widely accepted
throughout the world, and there is a wide selection of controllers
(including personal computers), hardware, and software packages
which have been designed to make the GPIB system easier to
implement and more useful. Before attempting to use a simplified
system of so-called friendly software, the test engineer should have
a fair command of at least one language with which he or she can
create a dedicated test program using the GPIB instruments and
devices at hand. It is important to understand the concept of the
IEEE-488 programming system. Using a canned software program
to avoid the hard work and long hours of designing and debugging
a custom test setup may seem enticing, but it will not allow the

85

86 IEEE-488 GPIB Manual

engineer to understand the intricacies of the well-designed IEEE-
488 system.

GPIB programs are written in controller language, and manufac-
turers of controllers such as Hewlett-Packard, Tektronix, and Fluke
have developed languages which are not interchangeable with each

these languages which are used in GPIB programming. When one
such language has been mastered, the others will be understood as
well, since there is not a great dissimilarity of the GPIB syntax of
each of the languages.

HEWLETT-PACKARD BASIC

BASIC is very readable and friendly and is relatively easy to learn.
Hewlett-Packard controlliers such as the HP 85, HP 9845, and HP
9000 family of controllers use a variation of this language called
HP-BASIC. The commands which are used to communicate with
the slave instruments on the bus are not very complicated, and the
syntax has been selected to be easy to read and very friendly. Table
6-1 is a listing of the most commonly used controller commands in
the HP-BASIC ianguage. In this table the controiier is assumed to
have a select code of 7 (the Hewlett-Packard convention for a GPIB
controller), and the addressed listener and/or talker an address
of 03.

HPL (HEWLETT-PACKARD LANGUAGE)

HPL preceded HP-BASIC and, as such, is not as elegant. It is,
however, very similar in function even though the syntax is quite
different. The program is written in lowercase lettering, and there
is much abbreviation compared to BASIC, Table 6-2 illustrates the

Programming the IEEE-488 GPIB

Table 6-1. Illustration of controller commands written in HP-BASIC.

Command Function

Clear 7 Used to initialize the port.

Output 703 Talk command for the controller; used to send messages to the
addressed listener.

Enter 703 Talk command for addressed talker; controller receives the
outputted data.

Send 7 ; UNL Universal unlisten command causes all units to unlisten.

Trigger 703 Triggers addressed listener to perform a function.

Local 703 Forces addressed listener into local operation.

Remote 703 Forces addressed listener into remote operation.

Clear 703 Clears addressed listener to default functions.

GPIB commands which are used to address and control the bus. As
in the HP-BASIC command tabulated above, the Hewlett-Packard
convention is to have the controller select code, 7, precede the

primary listener/talker address.

Table 6-2. Controller commands written in HPL language.

Command Function

cli7 Initializes the port

wrt 703 Talk command for the controller; used to send messages to the
addressed listener

red 703 Talk command for addressed talker; controller receives the
outputted data

trig 703 Causes addressed listener to perform a function

lcl 703 Forces the addressed listener into local operation

rem 703 Forces addressed listener into remote operation

clr 703 Clears addressed listener into default functions

88 IEEE-488 GPIB Manual

Figure 6-1. Picture of Tektronix 4041

4041 BASIC (TEKTRONIX)

Textronix manufactures a GPIB controller (Figure 6-1) model
4041, which is implemented with the easy-to-use Extended BASIC
language. The high-level commands of which this controller is
capable allow the user to control the GPIB without the need to
understand the IEEE-488 protocol. The controller automatically
takes care of the handshake, bus transfers, etc.

The 4041 BASIC language is easy to use and powerful, and it is
capable of both high-level and low-level GPIB cemmands.

Programming the IEEE-488 GPIB 89

English-like syntax provides a friendly programming language. To
improve self-documentation the 4041 features the following:

* Variable names of up to eight characters
FORTRAN:-like subprogram calls

* Variable passing from main programs to subprograms
* Local and global variables

512K of directly addressed memory

As with all Tektronix GPIB products, the 4041 adheres to the codes
and formats standard.

FLUKE 1722A CONTROLLER

The Fluke model 1722A (Figure 6-2) is an instrument controller
which has been designed to be used with a touch-sensitive CRT
display as the primary interface between itself and an operator. Its
keyboard is used as the programming medium and may be un-
plugged and removed during operation as an instrumentation con-
troller. Operating software is contained on either a floppy disk or
nonvolatile RAM, and IEEE-488 operation is fully supported.

The touch-sensitive CRT display is friendly and well-suited for
applications in which semiskilled personnel are required to operate
highly complex, sophisticated equipment. No keyboard is required,
and the CRT screen prompts the operator one step at a time.

The 1722A GPIB interface can transfer commands and data at a
rate of 30 kilobytes per second. When operating as an IEEE-488
controller, this unit may be programmed in BASIC, compiled
BASIC, or Extended BASIC as determined by the software pack-
age which is used.

Compiled BASIC provides greater flexibility and speed (3 to 5
times faster) than Fluke interpreted BASIC, and it includes the
capability of linking subroutines in FORTRAN or assembly lan-

90 IEEE-488 GPIB Manual

Tigure -2, Piciure of Fluke 1722ZA

guage. Long descriptive variable names as well as large multiple-
line statements are possible. Labels may be used in place of line
numbers for branch targets, but the use of line numbers remains an
option with the programmer. This freedom of format results in
readable, structured BASIC programs.

The Extended BASIC option provides a compiler that allows the
programmer to easily develop large (up to 2 megabytes) BASIC
programs. The features of this option include all those provided by
compiled BASIC, but the speed of execution is twice as fast as

Programming the IEEE-488 GPIB 91

Table 6-3. Comparison between the three programming language options of
the Fluke 1722A Instrument Controller.

Feature Interpreted Compiled Extended
BASIC BASIC BASIC
Program size 28K 35K 2M
Relative speed 1 3t05 2
Immediate mode commands Yes No No
3-D arrays No Yes Yes
long variable names No Yes Yes
True subroutines No Yes Yes
Program libraries No Yes Yes
Input line statement capacity 80 510 510
Global variables No No Yes
Step mode debugging Yes No No

Fluke interpreted BASIC. Table 6-3 illustrates the features which
each of the three Fluke BASIC languages offer.

PROGRAMMING SYNTAX OF THE 1722A

The programming syntax for the Fluke 1722A controller is very
much similar to that of the Tektronix system. This is illustrated in
Table 6-4, in which the most widely used commands to send and
receive messages and data on the bus are shown. In the examples
in Table 6-4 the addressed device is assumed to have a GPIB
address of 3, and port 0 of the Fluke controller is in operation. As
with all other high-level controllers, the Fluke 1722A has a com-
mand of the BASIC programming language which permits the
software engineer to integrate the GPIB commands into a program
which will perform the automatic test sequence as desired.

92 IEEE-488 GPIB Manuai

Table 6-4. Programming syntax of the Fluke 1722A controller.

Command Function

INIT PORT 0 Places the bus in an idle state, sending REN, IFC, UNL,
UNT, and PPU messages.

CLEAR @3 Clears addressed device to default functions.

REMOTE @3 Sets REN line true and forces addressed device into remote
operation.

LOCAL @3 Forces addressed device into a local state so that front panel
controls become active.

PRINT @3 Talk command for controller to send message to addressed
listener.

INPUK{ @3 Talk command for addressed listener to send data back to

) controller.

TRIGGER @3 Instructs addressed device to perform a function.

IF SPL(3%) THEN ... Performs a serial poll on addressed device and proceeds
to SRQ routine.

Y% = PPL(0%) Assigns the results of a parallel poll on port 0 to integer
variable Y.

PROGRAM COMPARISONS BETWEEN HP,
TEKTRONIX, AND FLUKE

One can see that there is not a great dissimilarity between the GPIB
syntax of the three BASIC languages required by the controllers
manufactured by Hewlett-Packard, Tektronix, and Fluke Com-
panies. The best way to compare one language with another is to
illustrate a simple GPIB program, written in each of the languages,
which will perform with a typical set of GPIB instruments. In the
following examples a Wavetek model 278 function generator,
driving an amplifier under test, will be commanded to assume a
desired output setting, and a Fluke model 8430 voltmeter will be
instructed to report back to the controller the output voltage of the
amplifier as measured by the voltmeter.

Programming the IEEE-488 GPIB 93

WAVETEK 278

GPIB ADDRESS 03

AMPLIFIER
UNDER
TEST

3

LOAD

FLUKE 8B840A
GPIB ADDRESS 10

I e

—L I

GPIB CONTROLLER

Figure 6-3. Amplifier test setup.

The test setup is illustrated in Figure 6-3, and the addresses of
the signal generator and digital voltmeter are assumed to be 03 and
10, respectively. Each of the following program examples are
identical in function, line for line.

HP-BASIC Program

100 CLEAR 703, 710

110 OUTPUT 703 ; "F1000COA0.1P1"

Sets GPIB instruments

to default functions

Sets function generator

to 1000 hertz, sine

wave,

0.1 volts peak-

to-peak, output on

94

120

130

140

160

<)

-
~1

IEEE-488 GPIB Manual

OUTPUT 710 ; "F2R3S1TO" Sets digital voltmeter
to power-up config-
uration, ac function,
20-volt range, medium
reading rate, con-
tinuous trigger

ENTER 710 ; V Instructs voltmeter to
report back to the con-
troller its voltage
measurement and place
it into variable V

W=2.83 *V Calculates the peak-to=
peak value of V and
places it into
variable W

G = W/0.1 Calculates amplifier
gain (output/input)

DISPLAY G Displays gain on con-
troller CRT

ol
<
]

FLUKE 1722A BASIC Program

100
110
120
130
140
150
160
170

CLEAR

PRINT @ 3, "F1000COA0.1P1"
PRINT @ 10, "F2R3S1TO"
INPUT @ 10, V

W= 2.83 *V

G = W/.1

PRINT G

END

Programming the IEEE-488 GPIB 95
TEKTRONIX 4041 BASIC Program

100 INIT

110 PRINT #3 : "F1000COAO.1P1"
120 PRINT #10: "F2R3S1TO0"

130 INPUT #10 : V

140 W = 2.83 * V

150 G = W/.1

160 PRINT G

170 END

COMMAND STRUCTURES

Each of the commands which are illustrated above, regardless of
which language they are written in, contains three major com-
ponents, the output command, the lis§ener’s address, and the mes-
sage itself. The output command is an inherent part of the syntax
as specified by the manufacturer of the controller. We have seen
that this can be somewhat different between one controller and
another. The words OUTPUT, PRINT, and wrt ail mean the same
thing, but only to the individual controller language of which they
are a part. The address portion of the command is also unique with
each manufacturer.

The message part of the command, however, is always the same
regardless of which manufacturer’s controller is transmitting on the
bus. The string “F2R3S1TO0,” sent to a typical GPIB digital
voltmeter, is part of the syntax required by the DVM. Any deviation
from this would not result in the desired message being transmitted
to the meter, since that instrument will recognize only its own
format.

g6 IEEE-488 GPIB Manual

CONTROLLER TIME-OUT PERIOD

The GPIB interface system is designed with a handshake protocol
so that message transfer on the bus can proceed only as fast as the
slowest addressed listener can accept data. This is a very important
feature of this system, since it prevents multi-acceptance of the
same ASCII character by a fast listener while a slow one is receiving
the same data. The NDAC handshake line is used to indicate the
acceptance of data by all addressed listeners, and the slowest one
will hold this line low (true) until it has properly accepted the data.
Only when the line is released by all listeners will the interface
system proceed to the next business at hand.

Under this restraint, the controller (and all other instruments and
devices on the bus) is powerless to proceed with communications
until the NDAC line goes high. If a device malfunctions and cannot
accept data, the communications on the bus can come to a complete
halt when using controllers which have an interface time-out period
of infinity. This problem is eliminated in some controllers which
have a time-out period set by either default or by a Set Interface
Time-out command in the software.

The time-out value tells the controller how long it should wait
for a handshake cycle to be completed. If an instrument malfunction
should cause the handshake cycle to be delayed beyond this allotted
time, the communication between the controller and that device is
aborted, thus permitting the interface system to continue with its
normal communications.

Under normal operation of the bus it is also possible that a slow
instrument can cause the handshake cycle to be delayed longer than
usual, possibly by a command which requires the instrument to
perform a complex, time-consuming task that delays cycle comple-
tion. If the controller can be programmed for a set time-out period
of perhaps 1 second, the speed of communication on the bus will
not be slowed in most cases. When the software program has been

Programming the IEEE-488 GPIB 97

completed and debugged, this time-out period may be able to be set
to a lower value.

Sample programs illustrating the time-out function will be found
in Appendix L.

SERVICE REQUEST INTERRUPTS

Service Request Interrupts are used by devices and instruments on
the bus to alert the controller to a change in status (including
power-up) or the existence of a problem. One of the five manage-
ment lines, identified as SRQ, is shared by all instruments on the
bus and is used for this purpose. Any unit on the bus can assert an
SRQ on this line to force an interruption in the current sequence of
events. There is no way for the controller to determine which device
on the bus asserted the SRQ, so it must query all units in the form
of a serial or parallel poll to determine which unit required service.
Some controllers will simply generate an error message when an
SRQ is received if they have not been programmed to respond to
the request. Others will ignore an SRQ unless they are explicitly
told what to do.

Since the SRQ line can be asserted for such conditions as power
on, warning messages, operational errors, and equipment malfunc-
tion, it is generally good practice to include a routine in the software
to handle these conditions when they occur. Of course, there is no
way to know when such a request is going to be generated by a
device on the line, so some sort of asynchronous command, such
as ON SRQ THEN 2000 must be written into the software. This
statement, used in Tektronix 4050 BASIC, transfers conirol to a
subroutine at line 2000 when an SRQ occurs. When the program
executes the ON SRQ command, transfer does not take place at that
time. Instead, a link is established in the program so that later, when
an SRQ actually occurs, the program is suspended and the sub-

98 IEEE-488 GPIB Manual

routine at line 2000 is initiated. A RETURN statement at the end
of the subroutine returns the program to the point at which it was
interrupted, so that it may continue.

When the controller receives an SRQ interrupt, it must determine
which unit on the bus requested service, since the SRQ line is shared
with all units on the bus, This process is termed polling, and the
IEEE-488 system allows either serial poll or parallel poll as the
method by which the controller determines which unit requires
service.

When the parallel poll is executed, up to eight units on the bus
are assigned a unique line on the eight GPIB data lines. Then, when
the controller asks for a parallel poll, the device which asserted SRQ
places its status bit on its assigned line. (Should there be more than
eight units on the bus, parallel poll must be done in two or more
groups.) Once the unit which requires service has been identified,
the software determines what action should be taken. This depends
on the applications program, as determined by the test engineer.

If the serial poll is implemented in the program, the instruments
are polled one at a time. In this case each instrument and device on
the bus can provide a fairly detaiied status report, since 8 bits are
available to each instrument to encode its status. When a serial poll
is initiated by the controller, the SRQ status of each instrument is
automatically cleared when it is polled.

Controllers usually are able to provide a high-level command
which implements either the parallel poll, serial poll, or both. For
example, in the 4050 BASIC language, the poll command POLL
N,S; 8, 5, 7 will cause the controller to read the status byte from
devices with addresses 8, 5, and 7 in that sequence, but it stops as
soon as it has detected the device asserting SRQ. When that
happens, the status byte is returned in S and the position of the
asserting device is stored in N. In the above example, if device 7
was asserting SRQ, the number 3 would be returned in N. Note that
the sequence of polling occurs in the order written in the POLL
command and not in numerical order.

Programming the IEEE-488 GPIB 99

The TEEE-488 document defines only 1 bit of the status byte
which is set when an instrument is asserting SRQ and is cleared
otherwise or when it is polled by the serial poll. Since the definition
of the other 7 bits of the status byte is left to the discretion of the
manufacturer of the instrument or device, it can be seen that it might
be quite difficult to program the software to decode the multitude
of possible status codes from many different manufacturers.

Some manufacturers have defined standards which define the
SRAQ status byte for all instruments that they manufacture, which
can greatly simplify the programming task for the test engineer. In
the Tektronix Codes and Formats standard, for example, a set of
codes is defined which all Tektronix instrument will report in the
case of an SRQ. Table 6-5 illustrates the various status bytes along
with the type of condition they represent.

Some GPIB instruments have been designed to allow a “mask”
to be applied to all serial polls. This feature allows the software
engineer the option of programming into the system a command
which will cause the instrument to ignore the poll. This is illustrated
in Table 6-6, a typical serial poll response byte from the Wavetek
model 278 function generator.

In Table 6-6 the SRQ status conditions can be masked by a
command from the controller. In the case of the Wavetek generator
described, the command XQ, followed by a value 0 through 255,
selects the conditions under which the generator will assert the SRQ
line and RSV bit. The equivalent binary value of the number
following the XQ command is the mask for the serial poll response
byte. A 1 in the binary value means that the condition is selected to
be recognized; a 0 allows the generator to ignore the condition.

PRIMARY ADDRESS

All GPIB devices are assigned an address, from 0 to 30, by means
of a set of switches or jumpers. Usually the manufacturer of the

100 IEEE-488 GPIB Manual

Table 6-5. Tektronix standard for status bytes returned in response to a serial
poll.

Status Byte Condition

011X 06000 The device is reporting an error but not identifying it. The
controller must send ERR? to determine what it is,

011X 0001 Command error resulting from a message that can’t be lexically
analyzed.

011X 0010 Execution error. The device can analyze the command but can-
not execute it, such as setting a meter out of range.

011X 0011 Internal error such as may be caused by a malfunction within
the device.

011X 0100 Power failure. Alerts the controller to possible defective data.

011X 0101 Execution error warning. The controller is alerted that the

device is executing a command but a problem may exist, such
as taking a measurement out of range.

011X 0110 Internal error warning. The device indicates that it has an
internal error but is continuing to function anyway.

000X 0000 This byte is returned when the device has nothing out of the
ordinary to report.

010X 0000 SRQ query request. The device asks the controller to send
SRQ? to determine why it is requesting service.

010X 0001 Power on. Sent when a device has finished a power on sequence
and has come on the bus.

010X 0010 Operation complete. Alerts the controller that some task has

been completed and it is ready for another command.

Note that the “X” in the byte is 1 when the device has asserted SRQ, and cleared when it
has not.

instrument or device will select a specific address for all like
instruments, and this may be changed to any other allowable
address by the user. Although the address selection can be any
number from 0 to 30, it actually represents two addresses: the talk
address (MTA) and the listen address (MLA). When the controller
wants a unit to listen to a message, it will assert the listen address.
Similarly, when it wants the unit to talk, it will send the talk address.

Programming the IEEE-488 GPIB 101

Table 6-6. Typical SRQ status byte generated by a function generator.

Bit
Decimal

Byte Position Bit Name Bit Description

00000001 1 Program error Indicates an error in the soft-
ware

00000010 2 Output protection Indicates that output

circuit protection has been iripped.

00000100 4 Fuse Indicates that fuse has been
blown.

00001000 8 Battery Indicates that battery is low.

00010000 16 Reference Indicates that generator is not
locked to the reference
signal.

00100000 32 Undefined Undefined

01000000 64 RSV Request for service.

10000000 128 SRQ Front panel SRQ key has
been pressed.

The actual listen and talk addresses of the GPIB device are offset
by a specific number from the switch or jumper selected primary
address. in accordance with the sixth and seventh bits on the data
lines. Adding 32 to the primary address generates the listen address;
adding 64 generates the talk address. It is usually not necessary for
the programmer to write the software with the necessary offset for
the desired listen or talk address since most controllers in use today
provide high-level commands which automatically set bits 6 and 7
and generate the correct addresses. For example, the HP-BASIC
command OUTPUT 703 will address a device with a primary
address of 3 to listen, by sending the listen address 35. The com-
mand ENTER 703 will address that same device to talk by sending
the talk address 67. In each of these commands the HP-BASIC
language requires that the select code, 7 for HP-IB controllers,
precede the device address.

102 IEEE-488 GPIB Manual

It is important to note that in any given GPIB system no two
instruments may share the same address. Since 31 addresses are
available, there is no problem in setting each instrument or device
to its own unique address. If the system contains units from two or
more different manufacturers, it is very possible that the GPIB
address selected by the manufacturers may be duplicated. Should
this occur, one of the duplicate addresses must be changed to an
unused one by resetting one or more of the address switches on one
of the units.

SECONDARY ADDRESS

Although for most instruments one listen and one talk address is all
that is necessary for that device to properly function on the GPIB,
there is a provision in the interface system to allow multiple
addressing, which permits the controller to go one step further into
the instrument. This is referred to as a secondary address.

For example, it is possible to have a GPIB controlled power
supply which may contain two or more plug-in boards to provide
separate power sources which may be individually controlled via
the bus. The power supply mainframe will be assigned the primary
address so that the controller can access that instrument when
required. Once the mainframe has been so accessed, the secondary
address will then be used to address the desired plug-in board. In
this way a GPIB controlled instrument or device can be designed
so that the controller has the capability of reaching into the instru-
ment to controi a specific portion of it.

When addressing a GPIB controlled device with a secondary
address, the controller command will contain both address codes,
usually separated by a punctuation character. For example, the

Programming the IEEE-488 GPIB 103

Fluke BASIC command to address a designated section of a listener
with a primary address 10 and a secondary address 4 is:

PRINT @ 10 : 4, AS$

This command addresses the device and transmits the contents
of string A$ to the portion of it identified as secondary address 4.

Chapter 7

TEKTRONIX Codes
and Formats

Although the first major step in the GPIB interface system was
taken in 1975 when the IEEE published its 488 standard, designing
an interface system using GPIP instruments and suitable software
was a major task because of the differences in programming re-
quirements for each manufacturer. Tektronix saw the need for
compatibility between all instruments on the bus and has tcok the
next step by adopting a standard which is called Codes and Formats.
The purpose of this standard is to define device-dependent message
formats to enhance the compatibility between instruments on the
bus, regardless of who manufactured them. By using the Tektronix
Codes and Format standard, the cost and time required to develop
applications software is substantially reduced. A standard system
of programming requirements allows the software engineer to
generate the required programs in much less time than would be
otherwise required . In addition, the resulting device-dependent
commands are easier to understand.

An offshoot of this philosophy provided manufacturers of GPIB
instruments the impetus to design user-friendly products so that the

108

106 IEEE-488 GPIB Manuali

required commands were easy to understand and the operation of
the system was tolerant of operator errors.

As a result of the Codes and Format standard, instrument
manufacturers have realized many advantages including reduced
labor costs, more efficient use of engineering skills, and improved
techniques through the reduction of human errors and more ac-
curate, repeatable measurements.

COMPATIBILITY BETWEEN GPIB INSTRUMENTS

One of the first questions which must be addressed is the “lan-
guage” which must be used by all instruments and devices on the
bus when transferring numerical data. The IEEE-488.1 standard
defines the system by which the message and data transfer takes
place, but it allows the instrument designer the option of selecting
the format. For example, if a voltmeter takes a voltage reading
which must be transferred on the bus, it would be possible to
transmit the information encoded in BCD or ASCII. Since the
information is transterred in a bit parallel, byte serial tashion,
another option arises: Should the data be transferred with the most
significant digit first, last, or some other way? Figure 7-1 illustrates
three possible ways in which measurement data can be transferred.
It can easily be seen that if an instrument encodes data in BDC and
the controller understands only ASCII, there can be a very cumber-
some problem to enable the devices to communicate with each
other.

Because almost all GPIB instruments today use ASCII coded
characters to send and receive data, the Tektronix Codes and
Formats standard has selected ASCII coding as standard. In addi-
tion, it utilizes the ANSI X3.42 standard which states that there are
three types of numbers — integers, reals, and reals with exponents.
These must be transmitted with the most significant character first.

TEKTRONIX Codes and Formats 107

000
00 0 ASCH
111 MSB FIRST
111
000
000
110
101
000
GPIB 000 BINARY
TALKER 000 MSB FIRST
000
000
000
110
101
00 0
600 ASCII
THREE POSSIBLE WAYS TO 11 1 |sB FIRST
TRANSMIT THE NUMBER 123 111
ON THE IEEE-488 BUS. MOST 00 0
INSTRUMENTS ARE STANDARDIZED 00 0
WITH ASCH, MSB FIRST 01 1
10 1

Figure 7-1. Example of three ways to transmit the number 123.

Figure 7-2 is a tabulation of the three different types of numbers
together with the restrictions on their format.

Although the format shown in Figure 7-2 has been defined by the
Codes and Formats standard, the use of such data has not. Such a
number may represent a voltage, a frequency, or any other data
which can be generated by a GPIB device. To identify this data, it
should be preceded by a “header” such as voltage, frequency, etc.
When more than one type of data is transmitted such as might be
obtained by a phase angle voltmeter, each set should have its own
header (voltage and phase) and there should be a semicolon separat-
ing them. When one type of data contains several measurements
such as repeated voltage readings, the data may be preceded by the
header and each set of data separated by a comma. Figure 7-3
illustrates several types of messages containing multiple data which
could be sent over the bus.

108 IEEE-488 GPIB Manual

TYPE EXAMPLES RESTRICTIONS
123 VALUE OF "o"
+ 74 MUST NOT
INTEGERS - 152 CONTAIN A
. MINUS SIGN
RADIX POINT
REAL + 4;-;; SHOULD BE PRECEDED
. BY AT LEAST ONE DIGIT
NUMBERS - 00045.1 VALUE OF "0 MUST
0.000 NOT CONTAIN A MINUS SIGN.
REAL VALUE OF "0" MUST
NUMBERS 75.2€ - 2 BE WRITTEN AS A
WITH ~ 1.657E + 1 | REAL NUMBER FOLLOWED BY
EXPONENTS | + 00.00E + 00 A ZERO EXPONENT

Figure 7-2. Three types of numbers allowed in the codes and formats standard.

The well-defined formats of data transfer over the bus, as
described above, significantly enhance compatibility and com-
munication among the instruments on the bus.

THE HUMAN INTERFACE

Since personnel with a limited range of skills may be called upon
to be involved with a GPIB interface system, it is important that the
commands which are directed to each instrument are easy to
understand and as simple as possible. For example, if it is desired
to program a power supply with a maximum output of 20 volts to
5 volts, it should not be necessary for the software to contain the

TEKTRONIX Codes and Formats 109

VOLTS 15, 05, 15, 09, 14.98, 15.02

FREQUENCY 400.12; PHASE + 90.1

XAXIS .751; YAXIS .347

Figure 7-3. Examples of multiple data that may be sent over the bus. Note that
each data ID is preceded by an identifying header.

ratio 5/20 in the device dependent message. A far better method,
allowing the power supply to compute its own required ratio from
the command, would be to send the ssquence VOLTS POSITIVE
20. Since most GPIB instruments manufactured today contain
microprocessors, it is not a difficult task to ask the power supply to
decode such a message and provide the correct output. This type of
format makes it easy for the software engineer, but possibly more
important it allows others who may come in contact with the
program at a later date to easily understand what the program
instructions are supposed to do.

The Codes and Formats standard adopted by Tektronix enhances
instrument and controller compatibility not only with the devices
themselves but with the people of widely divergent technical skills
which must work with them.

DEVICE-DEPENDENT MESSAGE STRUCTURE

A device-dependent message represents a certain amount of infor-
mation which is transmitted from one device to another on the

110 IEEE-488 GPIB Manuai

GPIB. The beginning and end of the message are clearly defined,
each is composed of one or more message units separated by
message unit delimiters such as a semicolon. The end of the
message occurs when the talking device asserts EOI. There are two
message unit types. These are:

1. Header followed by a space and optional argument of any
type. When more than one argument follows a header, a
comma is used for separation. Character arguments are used
for programming information, and noncharacter arguments
are used for measurement data.

2. Query message unit consisting of a character argument
followed by a question mark. A typical query, VOLTS?,
could be used to interrogate a voltmeter for its current
reading.

In addition to numbers, the device-dependent message units can
contain words which provide a specific instruction for an instru-
ment to assume a desired mode. Such commands may be TRIG-
GER EXTERNAL, FUNCTION DC, etc. In these situations the
first word of the command is considered to be a header and the
remainder data, called the argument, which is different from a
number. Other types of arguments are useful for various purposes.
These may be:

1. String arguments. Used to send text to a display or printer
Binary block arguments. Used to send blocks of binary data
of known length

3. End block. Used to send binary data of unknown length or
format

4. Link arguments. Used to send certain types of instrument
commands

TEKTRONIX Codes and Formats 111

Table 7-1 summarizes the allowable argument types which are
specified by the Tektronix Codes and Formats standard.

CONVENTIONS

Although the IEEE-488 document defines the operating system
between GPIB instruments, it does not guarantee compatibility
between all such instruments and devices produced by different
manufacturers. To provide well-defined operating conventions the
Tektronix Codes and Formats standard requires that a message
placed on the bus be a complete block of information. The purpose
of this requirement is to ensure that all instruments which meet the
Tektronix standard will be compatible with one another and no
possibility of ambiguity will occur as a result of poor hardware
design or software and human error. The block of information
begins when a talking device starts sending data and ends when EIO
is sent or received concurrently with the last data byte.

Without a well-defined system of message conventions it is
possible that some components in a GPIB systemn would not work
properly together. Suppose, for example, that the controller re-
quests a voltage reading from a meter which then transmits the data
followed by CR (carriage return) and LF (line feed). If the controller
is designed to respond to the CR character alone as the end of the
message, it will “hang up” at that point leaving the LF character in
the meter, unsent. When the meter is asked to provide the next
reading, the leftover LF character is sent first resulting in a message
which is meaningless to the controller, and an error is indicated.

Since some GPIB instruments are capable of transmitting data in
binary format which could conceivably take the form of the CR or
LF characters, a standard way to end a message is to assert EOI
when the last data byte of a message is sent. This prevents any

112

IEEE-488 GPIB Manual

Table 7-1. Examples and definitions of allowable argument types.
Argument Example Definition Purpose
Type
Character Trigger One alphabetic ASCII To transfer alphanumeric
argument character optionally data such as message
followed by any num- headers,labels, &
ber of ASCII charac- commands.

Non-character
argument

String
argument

Binary block

argument

Link
argument

End block
argument

Number-123.4

“Connect meter”

%(2 bytes)
(binary data)
(check sum)

TEST:12

@ABCDEF
E
o
1

ters excluding space,
comma, semicolon,
and question mark.

A numeric value in
any of the formats
shown in Table 1.

Single or double quote
followed by any num-
ber of ASClI charac-
ters, and a closing
quote identical to the
opening one.

% followed by 2 byte
binary integer specify-
ing the number of data
bytes, plus an 8 bit
checksum,

Character argument
followed by a colon,
followed by a value
represented in any of
the above argument
types.

@ followed by a block
of data with EOI con-
current with the last
data byte. End block
can be only the last ar-
gument in a message.

To send numeric values in

ASCII format.

To send ASCIl text to a
display, printer, etc.

To transfer large amounts
of numeric data such as
waveforms.

To attach a label to
another argument.

To send a block of data
when the amount or for-
mat is unknown.

TEKTRONIX Codes and Formats 113

possible false interpretation of data sent in binary form as the end
of amessage. The Tektronix Codes and Formats standard states that
instruments sending messages must assert EOI concurrently with
the last byte of the message.

There are other problems which may occur when instruments
execute each individual command as received. A serious problem
can occur, for example, when a programmable power supply
capable of producing relatively high voltages is commanded to
deliver a low voltage with a specified current limit followed by
another command for a higher voltage at a lower current limit. With
poor message handling capability, it is possible that the power
supply will deliver the higher voltage at the current limit set from
the previous command, because it has not yet received the new
current limit. This could have disastrous results in the event that the
load cannot sustain the excessive current limit. Proper program-
ming should have set the new current limit before changing to the
higher voltage. It is far better to design the power supply to execute
such commands only when the whole message is received and
accepted. The Tektronix standard prevents such an occurrence
since it requires that the listener not execute any command until the
entire message is received and terminated by the EOI line.

It is also important to clarify the message sequence further. If an
instrument sending data is interrupted by the controller such as
during a serial poll, it should continue with that message when it
becomes a talker again. Thus, a message begins when a device
enters the active talker state for the first time or following a
previously sent EOI and ends when EOI is asserted concurrently
with the last data byte.

When a device is instructed to talk, it should always say some-
thing, even if it has nothing to say. It should send a null message
consisting of a byte of all 1s, concurrent with EOL This tells the
listener that no meaningful data is forthcoming, and it prevents the
bus from being held up while the controller waits for data that does
not exist.

114 IEEE-488 GPIB Manual

Table 7-2. Serial poll status byte definition.

Abnormal Conditions Status Byte
ERR query requested 011X 0000
Command error 011X 0001
Execution error 011X 0010
Internal error 011X 0011
Power failure 011X 0100
Execution error warning 011X 0101
Internal error warning 011X 0110

Normal Conditions

No status to report 3 000X 0000
SRQ query request 010X 6000
Power on 010X 0001
Operation complete 010X 0010

Alistening device should always handshake even if it is confused
by a message that it does not understand or cannot execute. After
EOl is received, it should send out a Service Request and report to
the controller that nonsense has been received. The listener must
not, under any circumstances, attempt to execute a command that
it does not understand. Suppose, for example, that a programmable
power supply is commanded with a message containing four O's
instead of four zeros (a common human error). It could conceivably
put out its maximum voltage instead of the intended 0 volts, with
disastrous results. This scenario cannot occur with instruments
designed under the Tektronix Codes and Formats standard.

TEKTRONIX Codes and Formats 115

STATUS BYTES

Except for bit 7 (binary position 64), IEEE-488.1 does not specify
the meaning of the bits of the status byte which is sent to the
controller in response to a serial poll. Bit 7 is asserted when a device
has requested service.

Since there is a need for instruments to report certain types of
operating conditions or errors, the Tektronix Codes and Formats
standard has established a status byte convention. This is sum-
marized in Table 7-2. One common requirement is the need to
report if an instrument is busy or ready. Bit S has been reserved for
this purpose. A second need is to report if an instrument is ex-
periencing an abnormal condition. Bit4 is reserved for this. In Table
7-2 bit 5 has been shown as X, since it could be either a 1 or 0
depending if the instrument is in a busy or ready state.

In some instruments there may be more complex conditions
which must be reported in the status byte. In such cases, bit 8 may
be asserted. This will alert the controller that the status byte received
in response to the serial poll is not the ordinary type as illustrated
in Table 7-2, but is particular to that instrument.

QUERIES

Although the serial poll status byte can be used to transmit much
information concerning the condition of a device on the bus, it may
be necessary to send more details to the controller. This is ac-
complished through “queries.” A talker on the bus will usually send
measurement data when addressed to talk by the controller. In order
to receive information other than measurement data, the controller
can query the instrument in the form of a header, followed by a
question mark. The following are examples of queries and their
uses:

116 IEEE-488 GPIB Manual

ERR? This is used to determine detailed error conditions in an
instrument. The response to this query can be a number which
is coded to indicate the particular problem that is being ex-
perienced by the instrument.

SET? This query is used by the controller to command the in-
strument to send its present settings and other current status in-
formation. If this information is sent back to the instrument at
a later time, it can return the instrument to the same state as
when the SET? query was received. This feature makes it pos-
sible to develop a program which enables the instrument’s
front panel controls to be used as an input to the controller.

ID? This query forces an instrument to identify itself by send-
ing information such as model type and firmware version back
to the controiler. Such a feature is useful to identify a par-
ticular instrument in the field.

COMPATIBILITIES

As more and more “inteiligent” instruments and devices become
available, it is obvious that the necessity for compatibility between
the controller and various instruments on the bus is greater than
ever before. Any device with GPIB capability that contains
microprocessors or other advanced circuitry should be easier to use,
not more difficult. To this end, the Tektronix Codes and Formats
standard has specified several requirements which will enhance the
compatibility between controlier and slave devices. Such com-
patibility must, of course, include human and system considera-
tions. The following are examples of conventions adopted by the
standard:

TEKTRONIX Codes and Formats 117

1. Instruments should always send numbers in the formats
described earlier. However, when the instrument or device
is required to receive numbers, it should do so in a “forgiv-
ing” manner. For example, although negative zero should
never be transmitted on the bus, it should be accepted as
zero. Any number which is in scientific notation format
should adhere to the ANSI X3.42 standard, which specifies
the inclusion of the decimal point. Any number sent without
a decimal point should be received with an implied decimal
point following the least significant digit. Additionally, if a
number is received which has greater precision than the
listener can handle, it should be rounded off and not trun-
cated. This will enhance system accuracy.

2. A listener should always recognize spaces and commas as
argument delimiters. Multiple spaces or commas should not
be considered to be delimiters for null arguments. This is an
important convention since some controllers generate
spaces and send them on the bus.

3. It should not matter if headers and character arguments are
received or sent in upper- or lower-case. Such a convention
makes it easier for both programmer and human operator of
the interface bus.

4. Headers and character arguments which are sent by any
instrument should always conform to the corresponding
front panel controls of that device. This convention will go
a long way in reducing confusion and will help in under-
standing the programming and operation of the bus.

The above conventions are designed to make instruments more
friendly in their programming requirements, which will be greatly
appreciated by those who are not fully experienced with the inter-
face bus.

118 IEEE-488 GP!B Manual

There are other features which can be included in instruments
that are designed to the Tektronix standard. One of these is the
Service Request function and corresponding status bytes which are
returned in response to a serial poll. An important feature of this
capability is to inform the controller that an instrument has received
a command which it cannot execute, or that it is experiencing an
internal malfunction. This is important when such an instrument is
left unattended. It may also be possible that there could be some
measurement sequences which should not be interrupted by an
SRQ, such as when a sensitive, time-dependent measurement is
being taken. During such a sequence, the command RQS OFF can
be sent to disable the Service Request feature. To resume, the
command RQS ON would be sent.

Another consideration is the response to the Device Trigger (DT)
command. It may be desired to have an immediate response to this
command, or possibly only the instrument set-up for the Group
Execute Trigger command is desired. To have an immediate
response the message DT OFF is sent; to defer execution of
commands the message DT ON is sent.

The conventions discussed provide friendlier instruments and
enhance compatibility with all instruments on the bus. Without
well-defined codes and formats and without easy-to-understand
commands, instruments can be difficult to program and use. Using
the Tektronix Codes and Formats standard allows all devices to be
friendly, compatible, and easy to use. This goes a long way in
making the IEEE-488 bus the powerful and valuable tool that it was
meant to be.

Chapter 8

Hewlett-Packard PC
Interface Bus

OVERVIEW

Although the Hewlett-Packard Interface Bus, otherwise known as
the GPIB, has attained international standard status, HP has con-
tinued in its development of other interface systems which could
satisfy the growing need for device communication, especially with
regard to low-cost portable instrumentation which could be used
with the personal computer. One of these, the Hewlett-Packard
Interface Loop (HP-IL), was developed to perform the interface
function for battery powered instruments, but its data transfer rate
was far too slow to be considered for PC instrumentation. The first
group of instruments which was designed to work with the personal
computer did not use the HP-IL system. Instead, a new interface
system called Personal Computer Interface Bus (PCIB), was
developed for a special line of instruments which were unlike
previous designs; they were designed specifically to be controlled
by the personal computer. Figure 8-1 illustrates the difference in
architecture between the GPIB and PCIB systems.

119

120

IEEE-488 GPiB Manual

TO BUS
GPIB
]
CPU/MEMORY
| [| |
TEST/
POWER USER
MEASUREMENT
SUPPLY PUNCTON INTERFACE DISPLAY

GBIB INSTRUMENT

{’ PCI8 |}
[PCIB MODULE PCIS MODULE
. . CPU/MEMORY
TEST, USER i n
rower EAS N T USER iNTERFACE
FUNCTION DISPLAY

PCIB INSTRUMENT

Figure 8-1.

PERSONAL COMPUTER

Difference in architecture of the GPIB and PCIB systems.

One of the major objectives of the PCIB system was low cost,
which could be attained by allowing the display screen of the
computer to serve as the front panel of each of the instruments of
the interface system. The instruments would have no front panel
controls or displays, and the PC monitor would simulate the front
panel of each of the instruments as required. A touch screen, mouse,
or curser would be used to change the settings of the instruments.

The PCIB system is designed to provides a high data rate to
enable the PC screen to update quickly enough for real time

Hewlett-Packard PC Instruments Bus 121

oscilloscope displays. An additional feature of the system is the
capability to provide electrical isolation between the instruments or
peripherals and the computer as might be required in a sensitive test
setup. To this end the PCIB has been designed as a dual interface
system which can provide both a high data rate and electrical
isolation, but not simultaneously.

Since the slave instruments in the PCIB system have no front
panel controls and are designed to use the computing power of the
host PC instead of built-in microprocessors, they can be manufac-
tured at lower cost than similar instruments which would be used
in a GPIB system. Up to eight instruments can be served by one
card plugged into the computer, and additional plug-in cards allow
eight more additional instruments. Specially designed software ties
instrument control closely to the MS-DOS operating system of the
HP Vectra and IBM PC family of computers.

SYSTEM OBJECTIVES

Since the personal computer has proven to be a capable and cost
effective instrument controller, the PCIB system was designed to
complement and enhance its price and performance capabilities.
Certain objectives were thus attained in the design of the system.
Some of these are:

1. Produce PCIB instruments which were low in manufactur-
ing cost through the use of fewer components (50 percent
or less) than traditional instruments.

Use an unshielded cabling scheme which could be easily
configured by end users. This design would meet all the
requirements of Hewlett-Packard and regulatory agency
standards for electromagnetic compatibility (EMC) perfor-
mance.

]

122 IEEE-488 GPiB Manuai

3. Have a data rate of at least 100,000 bytes per second to
provide a reasonable update speed of the computer display.

4. Provide the capability to float instruments at line voltage

potentials while maintaining stringent safety standards for

both computer and instrumentation.

Maintain an interface power leve!l of 1 watt or less. Lower

operating power allows the use of battery operated equip-

ment and usually results in a lower-cost instrument.

6. Support eight PCIB instruments with a single interface card
placed in the computer expansion slot.

‘Lh

SYSTEM DESCRIPTION

The PCinterface system is designed to have up to eight instruments
connected to the bus with just one interface card plugged into the
host computer’s expansion slot. Additional cards permit increments
of eight more instruments to be connected together in the system.
Any mix of PC instrument modules is permitted.

The PCIB contains a register-oriented architecture in which each
function and data location has an individual register associated with
it. There are 16 directly addressable write registers and 16 directly
addressable read registers assigned to each instrument on the bus.
If required, expansion to a greater number of registers can be
accomplished through the use of an indirect addressing scheme.
System software provides the necessary commands which are
required in a register-oriented system, thus relieving the user of
these details. A simple communications protocol is used which
contains just three message types: command, address, and data.

Since the system uses separate registers per function, it is not
necessary for the PC instrument to process complicated codes and
formats. Instead, the instrument accepts the data from the bus and
directs it to the specified register, which causes the desired action
to take place. Unlike the GPIB and HP-IL systems, the PC Instru-

Hewlett-Packard PC Instruments Bus 123

ments Bus does not rely on mnemonics which were used for the
human operators and programmers to help them understand the
commands and messages on the bus. In the PCIB system the human
interface is provided in the software, permitting a standard ap-
proach to program commands.

Standard instrument operations such as initialize, enable, or
disable output are implemented through the use of command mes-
sages. All such commands are single byte and can be directed to a
single instrument (selected commands) or to all instruments simul-
taneously (universal commands). This capability is similar to that
of the GPIB. Sixteen different commands are possible in the PCIB
system.

Instruments in the PCIB system can be listeners, talkers, or both.
Each unit has its own listen and talk addresses which are used by
the computer to select the instrument to which a message is directed.
Addresses are a single byte which also includes the register which
is to be used for the data transfer. The host computer is always the
source or recipient of all data transfers.

Data transfers are performed 1 byte at a time to or from a selected
register in a form which can be directly used by the instrument.
Thus, it is not translated to and from ASCII. This keeps the number
of bytes smaller, reducing the overhead in each instrument. To
perform high-speed, multiple byte transfers, the parallel com-
munications channel is used.

PARALLEL COMMUNICATIONS CHANNEL

The parallel communications channel, illustrated in Figure 8-2,
must be used whenever high-speed data transfer between instru-
ments and computer is required. This mode of operation does not
permit electrical isolation between units. Data rates up to 100,000
bytes per second are possible, depending upon the limitations of the
host computer. A custom integrated circuit containing the output

124 IEEE-488 GPIB Manual

< DO-D7 DATA BUS >
CUSTOM =0 CUSTOM
INTEGRATED RI | INTEGRATED
CIRCUIT CATE CIRCUIT
FLAG
IRQ
|
PERSONAL PCIB
COMPUTER INSTRUMENT

Figurc 8-2. PCIB parallel communications channel.

drivers are designed for limited rise and fall times of the logic levels
to help meet EMC requirements. This chip also implements the
protocol, system commands, and register decoding for the instru-
ments of the bus.

As shown in Figure 8-2, the parallel communications channel
contains eight data lines, two transaction control lines TR0 and
TR1, two handshake lines GATE and FLAG, and an interrupt
request line. These 13 signal paths with their ground returns are part
of the 26 conductor cable which connects the host computer to the
instruments of the bus.

Hewlett-Packard PC Instruments Bus 125

Table 8-1. Definitions of encoding of transaction control lines TR0 and TR1

TR1 TRO Definition
0 0 Reserved for future expansion
0 1 System command
1 0 Instrument address
1 1 Data byte

Unlike the GPIB, the PCIB uses a two-wire handshake system.
These signal leads are identified as GATE and FLAG. GATE is
asserted when data placed on the bus by the host computer is valid.
During the command, address, and data operations, the selected
instrument(s) uses the gate line to strobe the data byte off the bus.
When a data byte is to be transmitted to the computer, the addressed
instrument uses GATE to strobe the data out of the internal register
of the instrument and onto the bus.

To complete the handshake sequence FLAG is asserted by the
instrument in response to the GATE signal generated by the com-
puter. When the FLAG signal is asserted, it indicates to the com-
puter that the data byte has been accepted. FLAG is also used to
indicate that data placed on the bus by the instrument is valid and
can be accepted by the computer.

Two control lines, TR0 and TR1, provide a 2-bit transaction code
for the current bus operation. This is illustrated in Table 8-1.

The logic level of the control lines, as indicated in Table 8-1, is
used by the computer and instruments on the bus to determine how
the data byte on the bus is to be interpreted. This code is valid during
the time when GATE is asserted. Note that instruments must not
respond to the reserved code, not even with a handshake. To do so
would compromise any future use of this code.

126 IEEE-488 GPIB Manual

The data bus consists of eight bidirectional lines which are used
by the computer and instruments to place and receive 1 data byte
at a time. Data provided by the computer is valid only when it
asserts the GATE handshake signal. Data from the instruments is
valid only when the GATE and FLAG handshake signals are
asserted. Qutput drivers on the bus have been designed with limited
slew rate outputs to help reduce radio frequency interference (RFI)
from the unshielded cable of the bus. This also reduces the pos-
sibility of cross talk between the conductors of the bus. To improve
rejection of noise and spurious responses from reflections, the input
receivers of the computer and instruments have a built-in hysteresis
characteristic.

As illustrated in Figure 8-2, an interrupt request signal line, IRQ,
is included in the PCIB. This has a similar function as SRQ of the
GPIB. It is used by the instruments of the bus to alert the computer
that a condition has occurred which requires the attention of the
host computer. Such a condition could be as simple as an indication
that the instrument is ready for the next data byte or amore complex
one such as a circuit failure. The nature of the interrupt request is
instrument dependent, and the IRQ line is iow true, which allows a
wired OR configuration between instruments. The computer can
determine that IRQ has been asserted by polling the status register
of its interface card.

The interface circuits used in the parallel communications chan-
nel are mostly contained in a custom integrated circuit. This chip
handles all the bus protocol and generates the master data strobe
signals for the instrument registers. Included in this IC is the
controlled rise and fall times circuitry as well as the interrupt
generation and detection circuits. Figure 8-3 isa simplified diagram
illustrating the built-in time constant which controls the rise and fall
times of the output drivers.

The host computer interacts with the parallel channel by writing
to I/O locations in its address space. Bus sequences are handled by
the PCIB I/O drivers. To allow bus operations to be handled at the

Hewlett-Packard PC Instruments Bus 127

° ==

OUTPUT R
DATA > !>° VVV
\ '
SamE / E

Figure 8-3. Output driver circuit of custom IC illustrating the RC-controlied
rise/fall time circuitry.

TO BUS

i L

rate required by the addressed instrument, handshaking between
the computer backplane and interface card is provided by an
interface status register.

SERIAL COMMUNICATIONS CHANNEL

The serial communications channel, illustrated in Figure 8-4, is
used for sensitive measurements if it is necessary to have electrical
isolation between instruments and computer. This situation arises
when the instruments must float at some potential above ground.
This method of interface between units limits the data rate, so it can
be used only when high speed is not a requirement of the system.
The serial bus uses two signals, TxD and RxD, for communica-
tion of all messages. These signal lines are part of the ribbon cable
which also includes the parallel bus. TxD is the signal used by the
computer to transmit command, address, and data messages. RxD
is used by the instruments to acknowledge handshakes and return
data and interrupt messages t5 the computer. Because multiple
instruments must use the same two wires for transmitting and

128 IEEE-488 GPIB Manual

el s

MICRO~
L % COMPUTER
< < —
H> ™o PC INSTRUMENTS MODULE

MICRO~

COMPUTER
RXD
<t
CONTROL

PCB NTERFACE CARD N PC MICRO-

L FE

PC INSTRUMENTS MODULE

Figurc 8-4. PCIB serial communications channel. Note optoisolators in PC
instuments module.

receiving messages, a new proiocol had to be developed for serial
communications. This is implemented by a single-chip microcom-
puter on the PCIB interface card, and in the instruments themselves.

Serial messages are transmitted in 12 bit frames as illustrated in
Figure 8-5. The first bit is the start bit which synchronizes all
instrument microcomputers to receive the transmitted data. The
next two bits provide the transaction code, similar to that used in
the parallel communications channel, which tells the instruments
how to interpret the data which is to follow. The data byte which is
to be transmitted comprise the next 8 bits of the serial sequence,
and the last bit is used for parity check to ensure that the entire frame
has been properly received.

When the serial frame is received by the instruments, it is
examined by each to determine if any response is required. If a
universal command is sent by the computer, all instruments of the

Hewlett-Packard PC Instruments Bus 129

PAR 07 D& Ds D4 D3 D2 Dt Do TRO TRI START

I]
Rﬁ NS I—\/_'
PARITY DATA BYTE TRANSACTION
CODE
DATA FLOW

Figure 8-5. PCIB serial frame illustrating flow of pulses.

bus will respond. When a listen address is sent, the specified listener
will wait for the data byte which is to follow and will store it in the
selected register. If a talk address is specified, the selected instru-
ment will retrieve data from the selected register and transmit it
back to the computer.

Each instrument’s microcomputer also performs the handshake
function to acknowledge receipt of a valid message. Figure 8-6
illustrates a handshake sequence which contains a valid data byte,
a data byte which is verified valid on retransmission, and a system
error.

If the parity of the message is correct, the addressed instrument
returns a frame on RxD which contains a 2-bit set (doubie-bit width)
indicating that good data was received. When the parity check fails,

Txo || [| EA I -
R XD L I L
2 & 187 !‘:l “MERIDRS-
Dﬁr& %‘ D‘ABTA& SYSTEM ERROR
RETRANSMT - ON

Figure 8-6. Handshake sequence in serial communications channel showing
valid data, valid data on retransmission, and system error.

130 IEEE-488 GP!B Manual

T X D UNADORESS ADDF:ESS ADDRESS

R XD

| !

IRQ INST. #2 MUST
BY INSTRUMENT RELEASE RXD WHEN
NUMBER 2 POLLED BY PC

Figure8-7. IRQsequence. When instrument requests service it pulls RXD low,
and releases it when polled by host computer.

only 1 bit is returned, causing the sender to retransmit the previous
frame. Should the parity check fail again on the retransmission, the
message is aborted and an error signal is returned to the system.

When all instruments are unaddressed, any device which has a
need for service and is capable of asserting IRQ will pull the RxD
line low to alert the host computer that a request for service has
been made. The computer responds by initiating a serial poll of all
instruments. When the instrument which had requested service
receives the poll, it releases the RxD line. This allows the system
software to initiate the appropriate response to the request for
service. Figure 8-7 illustrates the IRQ sequence.

All instruments on the bus are always aware of the current state
of the system since they each receive all messages. During the time
when no instruments are addressed, the RxD line is available to any
instrument for use as an interrupt request iine, which wiii puii it iow
if it has an interrupting condition. When the microcomputer on the
interface card is alerted that an interrupt has occurred, the system
software initiates a poll to determine which instrument requires
service. When an address frame is sent on TxD, the instrument
which initiated the interrupt is required to release the RxD line. This

Hewlett-Packard PC Instruments Bus 131

tells the host computer which instrument initiates IRQ and frees
RxD so that it can be used as for handshake or data. The RxD line
thus is capable of performing three tasks.

THE CUSTOM BUS INTERFACE IC

Since one of the requirements of the PCIB system is to use an easy-
to-configure unshielded cable, it was necessary to design a custom
integrated circuit (Figure 8-3) to eliminate problems which could
be caused by signal crosstalk and radio frequency interference.
Such a chip must contain bidirectional transceivers to the computer
as well as the instruments of the bus.

The driving circuits are designed to have slew rates which are
held to within predictable limits, regardless of the wide variation in
load capacitance which can occur in different test setups. The
maximum desired data rate, 100,000 bytes per second, fixes the
slowest allowable rise and fall times. The maximum slew rate is
constrained by strict Hewlett-Packard class B environmental re-
quirements. NMOS technology was chosen over CMOS to avoid
any possibility of latch-up.

The custom IC, packaged in a 48-pin dual-in-line package,
requires a single 5-volt power supply and dissipates about 1/3 watt.
It uses an internal negative substrate bias voltage generator.

The IC is required to implement three modes of operation:
computer pass through, pod protocol, and test modes. In the pass
through mode the chip is configured as a set of buffered, transparent
bus transceivers, with a single input line controlling the direction
of communication.

In the paralle] communications bus the pod protocol mode in-
vokes all the necessary logic for the instruments of the bus to
communicate. These functions include asynchronous handshake,
address selection and decoding, register control (command, read,
and write), interrupt masking and status, and bus data transmission.

132 IEEE-488 GPIB Manua!

TYPICAL CRT DISPLAY DF HOST COMPUTER
SHOWING SCOPE, DVM, COUNTER, AND RELAY SWITCHER STATUS.

61016A DIGITIZING OSCILLOSCOPE)

ScoPE o
CHANNEL A
4B6S mVoc T DN
OFFSET: 00 mv
ac xi
COUNTERDL 1
auTO FREQ [S [A e
126022 KHz) T T 1 LR UL 5?:57- 00 mv
A xi
D 1
SINE
109 itz + TRIG STLRCE: CHAN A
MODEs TRIGGERE D
CONTINUDUS T DISPLAY: AVERAGE
=500 us 3 S00 LS
CHAN A 200 MV/DIV CHAN B 200 Mv/DIV
BrasEr [(]
Cutacam o] status: FRONT PANEL CONTROL MODE
0.000

NOTE: RUNNING
ROLL P [ROLL DWN | [ETDR : ;lﬂg Farlil E’
$YS VIEV]|SYS VIEV | "

Figure 8-8. Typical CRT display of host computer.

The test mode, used only at IC wafer test, configures a serial scan
path through a 20-bit binary divider. This reduces the number of
clock cycles required to test the sequential counter.

A typicat PCIB might contain several of these cusiom ICT chips.
One chip will be located on the PC interface card and one in each
of the instruments which operate on the parailel communications
bus.

USING THE PCIB

A typical test setup of instruments under control of the PCIB might
inciude an osciiloscope, digital voitmeter, function generator, and
frequency counter in addition to the host computer. Since none of
the instruments has an operational front panel, the test technician
will control the system and view the simulated controls and displays
of each instrument on the computer display CRT. Figure 8-8
illustrates a typical computer display for the test setup.

Hewlett-Packard PC Instruments Bus 133

o

SYSTEM INTERACTIVE
VIEW | INSTRUMENT
WNDOW WINDOW
— STATUS WINDOW
I

SOFTKEYS WINDOW

Figure 8-9. Computer CRT is divided into four sections to allow system
overview and control of selected instruments functions and settings.

The computer screen becomes the means by which the instru-
ments are monitored and controlled. It is divided into four windows
or sections (Figure 8-9). These are:

1. Soft keys or function keys which contain the function key
blocks as in other PC programs.

2. Status window, a message area which provides prompts and
€ITor messages.

3. System view, an abbreviated view of all the instruments on
the bus except that which is displayed in the main window.

4. Interactive instrument window, which provides a complete
view of the desired instrument on the bus. From this window
the functions and settings of the instrument can be viewed
and controlled.

Note that in Figure 8-8 the main window of the display contains
the oscilloscope waveform, with all pertinent scope information

134 IEEE-488 GPIB Manual

presented below and to the right. The smaller window, located on
the left side of the computer CRT, contains an abbreviated display
of several instruments in the setup. This allows the technician to
view the status of these instruments while maintaining the instru-
ment of greatest interest in the large window. By using the roll-up
or roll-down function keys, any instrument on the bus (except the
one displayed in the large window) can be seen.

If it is desired to bring one of the other instrument front panels
into the main display area, this is easily accomplished by using a
mouse or the cursor keys to point an arrow on the screen at the
desired instrument or touching the screen if the computer is so
equipped.

To modify settings, the desired instrument is brought into the
main display window where the arrow on the screen can be pointed
at the desired control. The function keys of the computer are then
operated to increment or decrement the desired setting.

The PCIB system allows the user to save the front panel settings
of all instruments for recall at a later time during manual or
automatic operation. This is accomplished by operating the proper
function keys of the computer and entering the MS-DOS directory
and desired file name. The settings are stored in a similar manner
to any program or data.

Chapter 9

The Hewlett-Packard
Interface Loop

INTRODUCTION

The IEEE-488 Interface Bus (HP-IB) was developed to provide a
means for various instruments and devices to communicate with
each other under the direction of one or more master controllers.
This interface system has been widely accepted all over the world,
and there are currently more than 4000 different instruments and
devices which have been designed for use in this powerful and
elegant system.

The HP-IB was originally intended to support a wide range of
instruments and devices, from the very fast to the very slow.
However, since its inception, technology has spawned a wide
proliferation of medium-speed, low-power, low-cost instrumenta-
tion which also had a very real need to be operated in an automatic
test system such as the HP-IB. To satisfy this requirement, the
Hewlett-Packard Company developed a new interface system to
reflect and support the trends in electronic technology. One of these

135

136 IEEE-488 GPiB Manual

systems is called the Hewlett-Packard Interface Loop (HP-IL),
which is a low-cost, low-power alternative to the HP-IB system.

Although HP-IL and HP-IB provide the same basic functions in
interfacing controllers, instruments, and peripherals, they differ in
many respects. HP-IL is suitable for use in low-power, portable
applications because of its very low power requirements. In
general, it is not practical to operate the HP-IB from battery power.
Because HP-IL instruments have just moderate performance as
opposed to HP-IB devices, they generally are much lower in cost.
The HP-IL maximum data rate is 20K bytes per second. This is a
high rate compared to RS 232C, but much slower than HP-IB.

Cable length is generally not a problem with HP-IL; up to 100
meters separation between instruments, using shielded twisted
pairs, is possible. HP-IB requires extender hardware to exceed 20
meters between devices.

It is possible to assemble a system which includes both HP-IB
and HP-IL devices through the use of an HP-IB/HP-IL interface.
One such unitis provided by the Hewlett-Packard Company, model
HP 82169A Interface. The controller in a combined system using
the HP Interface can be either an HP-1B or HP-IL device.

HP-IL OVERVIEW

The HP-IL is a serial interface which uses a pair of wires, usually
in the form of a twisted pair, to transmit commands, messages, and
data from one unit to another. As with the HP-IB system, there are
three types of devices in HP-IL: listeners, talkers, and controllers.
In any given HP-IL system there can be only one active controller
at a time, but it is also possible to have a simple interface which
contains one talker and one listener, and no controller. Figure 9-1
is an illustration of a simple HP-IL system containing a controller
and three slave devices. This system can also be described as a ring
or loop interface.

The Hewlett-Packard Interface Loop 137

CONTROLLER

SIGNAL

VOLTMETER GENERATOR

PRINTER

Figure 9-1. Simple HP-IL system showing message path around the loop.

In this loop interface, information travels 1 bit at a time from one
unit to the another, in sequence around the loop, until it returns to
the originating device. Suppose, for example, that the controller in
Figure 9-1 wanted to send a command to the voltmeter. Since the
direction of message transmission is shown clockwise, the message
must pass through the signal generator and printer before it reaches
the voltmeter, where it is stored in memory. The data, meanwhile,
continues around the loop to the controller where it can be com-
pared to that which was sent out, to check for errors and prove its
validity.

HP-IL FEATURES

The HP-IL system will support a total of 11 devices on a single loop
using standard single-byte addresses. Provision has been made to
use an extended form of addressing which involves 2-byte addres-
ses. This permits the interface to support up to 960 devices.

138 IEEE-488 GPIB Manual

LOGIC 1 PULSE LOGIC ZERO PULSE

Figurc 9-2. HP-IL transmission code waveshape.

The maximum data rate, using a shielded twisted pair of wires
between devices, is theoretically limited to 20,000 bytes per second
and is not affected by cable length. Since the actual data rate
depends upon the maximum speed that a slave device can accept
or transmit data, it would not be unususal to have a transmission
speed of one tenth of the theoretical maximum; 2K bytes per second
is equivalent to transmitting about half an 8 1/2 by 11 page of text
per second.

Figure 9-2 illustrates the HP-IL three-level transmission code, in
which a logic 1 is represented by a pulse of positive 1.5 volts
followed by a negative puise of -1.5 voits. Conversely, a iogic 0
consists of a negative pulse of -1.5 volts follwed by a positive pulse
of 1.5 volts. When there is no activity on the line, the voltage
between the twisted pair remains at zero.

The electrical diagram of an HP-IL transmission path is shown
in Figure 9-3. The line is electically isolated from the devices of the
HP-IL by means of a pulse transformer, which provides level
translation as well as isolation. Drivers and receivers are two wire
balanced pair circuits. If a simple two-wire cable (zip cord) is
connected between units, the maximum allowable distance is 10
meters. A twisted shielded pair permits the maximum distance to
be 100 meters.

Additional features of the HP-IL system include a power-down
or standby mode of operation in which the controller can place
devices “to sleep” and wake them when necessary to perform a

The Hewlett-Packard Interface Loop 139

YAYAAY;
TRANSMISSION PATH
HP—IL ﬁ TO NEXT DEVICE
cCusTOM | T j:"L VWV T
‘-'-’E = PULSE
c TRNASFORMERS

TRANSMISSION PATH
FROM PREVIOQUS DEVICE

i3

Figure 9-3. Block diagram of HP-IL transmission line driver and receiver
circuits.

required task. This can be a very important consideration when
using battery-powered equipment.

HP-IL controllers may also incorporate an auto-addressing fea-
ture in which addresses are automatically assigned by the control-
ler. This feature allows the user to add devices to the loop without
worrying about setting address switches.

One of the features of the HP-IL system is the ability to collect
data using a portable device and then bring the unit into the office
or laboratory to transfer the information to the HP-IL system. This
feature can be very advantageous for taking inventory, meter read-
ings, market research, and any other requirement for which data
must be assimilated at a remote location.

HP-IL MESSAGE STRUCTURE

The structure of an HP-IL message is depicted in Figure 9-4. It
consists of 11 bits, three of which contain control information and
the remainder data or commands. The HP-IL specification requires
that all units of the interface speak the same language, and it defines
a common set of messages that all devices in the system must
understand.

140 IEEE-488 GPIB Manual

DIRECTION
OF TRAVEL

|0o] p1]o2]p3]04]0s o8 [o7]co] c1c2] —>

| I |

v A4
COMMAND CONTROL
OR DATA BITS

Figure 9-4. HP-IL message structure,

This 11-bit message travels through the loop, with bit C2 being
sent first. If a particular message pertains to the device that receives
it, a local copy will usually be made and the message retransmitted
to the next unit on the loop. This speeds up the overall throughput
and allows execution to occur concurrently when more than one
unit must respond.

Bit C2 is the first bit sent in the message, and it serves as a
synchronizing or start bit, since the message is an asynchronous
event. An additional function of C2 is to indicate to a device if the
DO to D7 bits of the message contain data (C2 = 0) or a Command,
Ready or Identify message (C2 = 1).

Bit C1, in nondata frames, is set to 0 when the message is a
Command or Ready frame and to 1 when an Identify frame is sent.
In a data message, C1 is used to indicate that the byte is the last in
a logical group.

Bit C0 is the service request bit in Data or Identify frames and is
used to alert the controller that a device needs service as soon as
possible. If C2 and C1 are 1 and 0 respectively, CO indicates that
that the message is a Command (C0 = 0) or Ready (CO = 1) frame.

Figure 9-5 illustrates the HP-IL message hierarchy. The
categories or classes of messages are based on the coding of the C2,
C1, and CO bits in the message frame and define a logical and
convenient method of implementing the HP-IL messages in the
software.

The Hewlett-Packard Interface Loop 141

Mojor Closs |pata or End I Commnndl Reody I
Subgrovp I —l
Usten Tolk Secondary
Address Address Address
Group Group
Instruction
Level lLap] [sap]
A2 T s
END (5R0,
Figure 9-5. HP-IL message hierarchy.
INTERFACE FUNCTIONS

A group of functions identified as primary interface functions are
require for all devices which are intimately related to the primary
HP-IL roles of listener, talker, or controller. These functions are:

1.

Receiver (R). All units on the loop must be capable of the
Receiver function since every device must be capable of
listening to messages to determine if it is the intended
recipient or should simply retransmit it to the next listener.
The receiver function does not perform the retransmission
of the message; this is provided by the driver interface
function.

Driver (D). All devices must implement the driver function,
since most received messages will require retransmission on
the loop.

Listener (L). This function is required only for those units
which will function as listeners on the loop, and it is active
when the device has been addressed as a listener. Note the
difference between the receiver function, which may merely

142

IEEE-488 GPIB Manual

direct the driver to retransmit a message, and the listener
function, which must accept messages from the acceptor
handshake logic to be used by the instrument itself.

Source Handshake (SH). Devices that operate as a talker or
controller on the loop must be implemented with the source

these units. This function receives messages to be trans-
mitted from the device and directs the driver function to
perform the actual transmission.

Talker (T). The talker function permits a device to transmit
data and status information on the loop. This capability is
not activated until the unit receives its Talk Address (TAD)
message. Data cannot be sent until the Send Data (SDA)
message is received. This function also has the resposibility
of generating the End of Transmission (EOT) message after
data and status transmissions are completed.

Controller (C). Any device on the loop which implements
the controller function will be able to generate the Command
(CMD), Ready (RDY), and Identify (IDY) messages. It will
also be able to check the loop for service requests and
perform parallel polls. Although there can be more than one
device on the loop capable of acting as the controller, only
one can be active at a time. This responsibility is passed
between controllers using the Take Control (TCT) com-
mand. Only one device, however, is designated as system
controller, which has the responsibility of assuming control
at power-up and is the only device on the loop whch can
source the Interface Clear (IFC) message.

Device-control interface functions are associated with the actual
functions of the devices on the loop rather than with the primary
functions described above. These functions are:

The Hewlett-Packard Interface Loop 143

Power-down. This optional function is activated in a device
when the Loop Power Down (LPD) message is sent by the
controller. The LPD message is not specifically addressed
to any one or group of units; any device which does not
implement this function merely ignores it and passes it to
the next device on the loop. A unit which assumes a power-
down mode may place itself in a low-powered state or
completely shut down as designed by the manufacturer of
the equipment. All devices that respond to the power-down
command must monitor the loop at all times to be able to
receive and react to the “wake-up” command from the
controller. Any activity on the loop after the LPD message
automatically returns all powered-down devices to their
normal state. The power-down feature is useful when bat-
tery powered equipment is being used on the loop.

Device clear (DC). This optional function may be imple-
mented in a device two different ways. The DC1 subset of
this function allows the instrument to be cleared to a known
state (determined by the device manufacturer) when the
Device Clear (DCL) message is received. The DC2 subset
allows the additional capability of permitting the device to
be selectively cleared by the controller when the Selected
Device Clear (SDC) message is sent.

Remote Local (RL). This optional function permits a device
to respond to either its own front panel controls or to
instructions by the controller. This feature is useful when a
device’s functions or settings must be frequently changed
during the course of a test sequence. An extended version
of this function provides a lockout feature which deactivates
the front panel controls when the Local Lockout (LLO)
message is received. This prevents an operator from altering
an instrument’s setting during the test.

144 IEEE-488 GPIB Manuai

There are additional interface functions which may be included
in a device. These are of a general nature, dealing with the loop
itself rather than with any particular device function. They include:

1. Automatic address. This optional function allows a device
- tobe assigned an address as directed by the controller. There
are no subsets to this function, but two other interface
functions provide a variation of the auto address feature.
These are auto-extended (AE) and auto-multiple (AM). The
auto-extended function allows a device to store the address
directed by the controller, increment it, and pass it to the
next device in the loop. The auto-muitiple function ailows
each function in a device to be assigned a separate loop
address.

2. Device Dependent (DD). This optional function allows a

device to respond to a message when the meaning of that

message is entirely dependent upon the device itself. Before

a unit can respond to such a message, it must first be

addressed as a talker or listener by means of the DDL

(device-dependent listener) or DDT (device-dependent

talker) command. Since this function provides a simple way

to contro! device activity, it will probably be implemented
in most HP-IL devices.

Service Request. This optional function allows a unit to

request service from the controller by setting the service

request byte in a Data or End (DOE), or Identify (IDY)
message. Any device so implemented must also be capable

of being addressed as a talker so that it can respond with a

status byte when the controller responds to the service

request with a polling operation.

4. Parallel poll. This optional function allows a unit to respond
to a parallel poll from the controller by returning 1 bit of
status information within the IDY polling message. Any
such device so implemented must be capable of being a

PJ

The Hewlett-Packard Interface Loop 145

listener and must respond to the Parallel Poll Enable (PPE),
Parallel Poll Disable (PPD), Parallel Poll Unconfigure
(PPU), and Identify (IDY) messages.

COMMAND GROUP MESSAGES

The Command Group messages are those which are sourced by the
controller to establish initial operating conditions on the loop and
to change operating modes of the listeners in accordance with the
requirements of the test sequence. These are:

1.

Interface Clear (IFC). The IFC message is typically sent
around the loop at the time of power-up of the system to
ensure that all devices are programmed into a predefined
state. When the message has completed its trip around the
loop, it informs the controller to send the Ready for Com-
mand (RFC) message to verify that all devices have com-
pleted the IFC command.

Device Clear (DCL). The Device Clear message can be used
by the controller to reset a device to a predefined state. Not
all units on the bus need to respond to this message. The
Selected Device Clear (SDC) command may be sent to clear
only those devices which have been addressed as listeners.
This command is useful when there are many devices on the
loop and the user wishes to clear only one or more selected
units.

Loop Power-Down (LPD). This command provides a means
for the user to conserve power by setting devices on the loop
in a standby or idle state. This feature is very useful when
one or more devices on the bus is powered by an internal
battery.

Listen Address (LAD). This command is used by the con-
troller to cause a selected device to become an active lis-

146 IEEE-488 GPIB Manual

tener. This enables the unit to accept data or other informa-
tion from an active talker on the loop.

5. Unlisten (UNL). This message is sent by the controller and
causes all devices currently addressed as listeners to go into
an inactive state.

6. Talk Address (TAD). This command is sent to one device
on the loop to cause it to become a talker. There can be only
one active talker on the loop at any given time.

7. Untalk (UNT). This command causes the currently ad-
dressed talker on the loop to become inactive.

HP-IL MESSAGE TABLE

Table 9-1 is a listing of the messages specified for HP-IL. In this
listing, A is an address bit and X is a “don’t care” bit. For Parallel
Poll Enable the decimal value of BBB bits assign a service request
bit DO through D7. S is the sense bit which is 1 when a device needs
service and 0 when it does not.

The Hewlett-Packard Interface Loop 147
Table 9-1. HP-IL message table.
NAME |MESSAGE CODING CLASS MESSAGE FUNCTION SUB GROUP
AAD 01 100 AAAAA Reody Auto Address 0-30 AAG
AAG 01 _100 XXXXX Ready Auto Address Group —_
| _AAU 00_1001 1010 Commond Auto Address Unconfiqure UCG
ACGs 00 _X000 XXXX Commond Addressed Commond Group —_
AEP 01 101 _AAAAA Ready Auto Extended Primary AA
AES 0 O AAAAA eady Auto Extended Secondory AA
AMP 0 1 AAAAA Reody Auto Multiple Prirnory AA
[ARG 01_D1XX XXXX Reody Addressed Ready Group -
| CMD XXXX_XXXX Command Commond Closs Message -
DAB X_XXXX XXXX oto or End Data Byte —
[DeL 60 0001 0100 ommand evice Cleor 1uc
DL 00 101X XXXX Commaond Device Dependent Listener ACG
DD 00 110X XXXX Commond Device Dependent Talker ACG
DO OXX_XXXX XXXX Doto or End Dota or End Closs —_
EAI 100 000t 1000 Commaond noble Asynchronous Requests Uce
END 01X XXXX XXXX Dota or End nd Byte —
EOT 01 0100 000X Reody End oi Tronsmission ARG
ETE C1_0100 0001 Ready End_of Iransmission — Error ARG
ETO 01 0100 0CCO Reody End of Transmission — OK ARG
| GET 00 X Commond Croup Execute Trigger ACG
GTL 00 0000 0001 Commond Go_to Local ACG
AA o1 00 111 Reody lileqol Auto Address AAG
DY 10X XXXX_XXXX dentify identify —
E 01 101 11 Reody Wegol Extended Primary ARG
E! 01 110 11 eody egol Extended Secondar AAG
["IFC 00_1001_0000 Commond interfoce Cleor Uce
WP 01 111 eody Weqol Multiple Primary AAG
LAD)0_001_AAAA ommond isten Address (0—30) LAG
G O 001X _XXXX Commgnd isten Address Group -
| LLO 00 0001 0001 Commond Local Lockout uceG
LPD 00 1001 101 Command Loop Power Down UCG
MLA 00 _DO1 _AAAAA Commond My Listen Address LAG
MSA 00 011 AAAAA Commond My Secondary Address SAG
MTA 00 010 AAAAA Commond My Tolk Address TAG__]
NAA 01 100 AAAAA Reody Next Auto Address [AAG
NES 0 O AAAAA eady Next Extended Secondory AAG
"NMP AAAAA Reody Next Multiple Primary AA
NRD 01 0100 0010 Recdy Not Reody for Dats ARG
NRE 1001 0011 ommond Not Remote Enable UcG
NUL 00_0000 0000 Commend Null Commond ACG
| OSA 00_D11_AAAAA Commond Other Secondery Address SAG
OTA 00_010 AAAAA Commond Orher Tolk Address TAG_|
[PPD 00 6101 Command arallel Poll_Disoble AC
PPE 00 1000 SBBB Commond Porollel Poll Encble AC
PPU 00_0001_0101 Commond Parollel Poll Unconfigure UCG
RDY 01_XXXX_XXXX eody Ready Class —
" REN 1001_0010 Commmond Remote Encble UCG
REC X X000 Ready Reody for Command —
SAD 00 011 _AAAAA Commond Secondary Address SAG
SAG 00 011X XXXX Commond Secondory Address Group fand
SAL 01_0110 0011 Ready Send_Accessory !0 ARG
I SDA 01_0110_0000 Ready Send Data ARG
SDC 00_0000_0100 Commond Selecied Device Cleor ACG
SBI 01 0110 0010 eody nd ce | ARG
SOY 01 0110 _OXXX eady Starf_of Tronsmission ARG |
SRGee XXXX XXXX or I0Y r t =
| SST 01 0110 0001 d: nd St ARG
AD 00 010 AAAAA Commond [olk_Address TAG
| TAG 00 010X XXXX Commond olk_Address Group —
CT 01 0110 0100 Reody oke Control ARG
UCG 00_X00T_XXXX Commond Universal Commond Group —
| UNL 1 Commond Unlisten LAG
UNT 00 0101 Commond Untolk TAG |
ZES 61 110 0000 eody ‘ero Extended Secondory AAG

Chapter 10

Increasing GPIB System
Performance

OVERVIEW

This chapter will explore some of the ways in which an automatic
GPIB test system can be improved to take full advantage of the
capability of IEEE-488. When the software for an automatic test
system using the IEEE-488 interface has been debugged and is
running in accordance with the requirements of the required tests,
it probably can be improved through the use of techniques which
have been designed into many GPIB controllers and instruments
for maximum performance. Just as any operating computer pro-
gram can be improved with a second look, so can the IEEE-488.
Probably one of the most important considerations in designing
a GPIB system for maximum performance is the choice of the
instruments to be used in the system. Because there is such a vast
selection of controllers, personal and larger computers, and GPIB
devices available today, the selection of the best instruments for the
job can be difficult. Of course, in many cases it is necessary to use

149

150 IEEE-488 GPIB Manual

whatever hardware is on hand, but it may be possible to justify a
capital expenditure to improve the operation, accuracy, and speed
of a test system.

It is important for the software engineer to be familiar with the
capabilities of the controller and every instrument or device he or
she plans to use. Such familiarity will always result in a better
program sequence and more efficient use of valuable time during
the automatic test sequence. For example, a digital meter can be
programmed to operate on a designated range or can be allowed to
seek its own range through its autoranging feature. In any test setup,
it is almost always better to specify the required instrument range
rather than have it search through all ranges until the best one is
obtained. It is very obvious that much test time can be lost while a
digital voltmeter takes multiple readings while its autoranging
circuits settle down to the proper range.

Another important consideration which can provide the most
efficient GPIB test system is the choice of the controller, which may
be an common PC, a sophisticated high-performance work station,
or anything in between. If the automatic test system is essentially
seif-contained and requires very little interaction from an operator,
almost any type of GPIB controller will do the job. Using a more
elaborate type of unit will not be cost eftective in the amount ot
time which can be saved. When much human interaction is re-
quired, it makes good sense to investigate the latest technology
which has been developed to make the IEEE-488 system more
understandable and easier to use.

A controller such as the Fluke 1722A has been designed to be
well-suited to applications in which semiskilled personnel need to
operate complex systems which perform sophisticated tests and
measurements. A friendly graphics display has replaced the often
intimidating keyboard, and the operator is prompted one step at a
time. Response to the prompts is accomplished by touching the
screen at the appropriate point. Such a system can always be
updated as new software becomes available.

Increasing GPIB System Performance 151

It is not necessary for the software engineer to have intimate
knowledge of the controller and instrument programming codes
and data formats. Software vendors have developed PC-based
software development tools which include libraries of many
popular IEEE-488 instruments. These tools provide on-screen.
descriptions (including graphics) of the instruments functions. The
software automatically assembles the programming string to trans-
mit the message to the IEEE-488 bus. For those GPIB instruments
which are not a part of the software library, it is always possible to
write the required programming, although this may be a difficult
task.

INSTRUMENT SETUP TIME

Instrument setup time is composed of two parts: the time required
for the device to accept and decode a command and the time
required for that command to be fulfilled. The former represents a
very small part of the time required for the sequence to be com-
pleted. It is the second part, called settling time, where the software
engineer should concentrate his or her efforts to maximize system
performance.

To help reduce setup time in the GPIB system, the number of
setting changes in the program should be kept to a minimum.
Wherever possible, command the instruments to the desired set-
tings early in the program before the actual functions are needed.
A good example of this is in the programming of a power supply.
To avoid the relatively long settling time between the command
and the actual desired voltage output, the power supply should be
set up before it is needed, making WAIT statements in the program
unnecessary. If the default mode of an instrument is satisfactory,
use it since there will then be no need for a programming step to
set that instrument up. If several tests are required which use the
same instrument settings, group these tests in the program.

152 IEEE-488 GPIB Manual

If any instrument on the bus provides internal setting storage,
take advantage of it. This will help minimize setup time by reducing
the time required to transfer and process the setting commands. An
example of such an instrument is the Tektronix FG 5010 function
generator, which can store 10 instrument setups. Bear in mind that
storage of instrument settings does not reduce the setiling time
required by the device.

Software techniques can often help improve system speed. If the
settling time of an instrument is known, a simple WAIT statement
in the program can be used to halt the program sequence. Another
method is to take several readings in rapid succession and compare
them. When the readings are within a fixed desired window, they
can be considered valid.

Be familiar with the operational aspects of the instruments on the
bus. Some newer devices have a fast handshake and other features
(program storage, buffering, etc.) built-in. Allow “smart” GPIB
instruments to perform time-consuming tasks through hardware
features which otherwise may require many lines of software
programming.

Wherever possible, avoid unnecessary unaddressing and read-
dressing steps. Bear in mind that when any device is addressed, all
others automatically become unaddressed. Suppress unneeded ter-
minators, and use GPIB commands instead of device-dependent
commands if possible. Suppress leading and trailing spaces. For
example, the HP-IB BASIC command, OUTPUT 701; A$, will
transmit 19 spaces after A$ and before the CR/LF. A faster com-
mand would be OUTPUT 701 USING "K"; A$, which sends out
no spaces.

Refer to the operating manual of the instruments that are being
used on the bus to determine if response time can be improved by
turning off certain functions when not needed. For example, blank-
ing an instrument display or CRT can save programming time since
the instrument is not required to update the display whenever it
receives new data. The same holds true for other functions, such as

Increasing GPIB System Performance 153

autozeroing. If the feature is not required for the test, delete it using
the device-dependent message from the controller.

One of the best methods to improve system performance is
through the specialists and system engineers of the manufacturers
of the GPIB equipment and hardware that is being used. Through
their intimate knowledge of the instrumentation they can usually
provide timely answers to questions regarding the improvement of
system speed and performance.

DATA ACQUISITION

There are two major areas of data acquisition time which must be
considered in the IEEE-488 interface system. These are trigger
delay and digitizing time.

Trigger delay occurs when a software command or external event
directs a GPIB instrument (such as a voltmeter) to begin accumulat-
ing data. It is the time between the point when the instrument is
ready to accumulate data and the point when the trigger actually
occurs. This is illustrated in Figure 10-1. If the instrument is busy
capturing pretrigger data when the trigger is initiated, it will ignore
that trigger until a new cycle of data acquisition is completed.
Included in the trigger delay time is hold-off time, if the GPIB
instrument is designed or programmed for that parameter.

The second part of data acquisition time of an instrument is called
digitizing time. This is the time required for the device to perform
the sampling of the measured data, digitize, and latch it so that it
can be transmitted on the bus. The conversion time of a common
analog-to-digital converter is a good example of digitizing time,
which can be calculated as the reciprocal of the conversion rate.
The 1/3-second reading rate of many digital voltmeters is a good
example of digitizing time, which may be as much as 300 mil-
liseconds.

154 IEEE-488 GPIB Manual

SIGNAL
T0 BE
ANALYZED

TRIGGER DIGITIZING
r'bewr Bt — TIME R ——

INSTRUMENT TRIGGER END OF
READY TO ACQUISITION
ACCUMULATE TIME
DATA

Figure 10-1. Trigger delay and data acquisition time.

Many smart GPIB instruments provide the software engineer
with some latitude in the amount of digitizing time that will be
required in the program. For example, the Fluke 8840A digital
voltmeter allows the measurement rate to be front panel or GPIB
seiected as 2.5, 20, or 100 readings per second. Of course, one does
not get something for nothing; when the faster rates are chosen,
there must be some sacrifice in measurement resolution and ac-
curacy.

It is important to consider the operating options which are avail-
able to the software engineer when programming a device to
acquire data. For example, a digital voltmeter will self-trigger (free
run) at a predetermined rate. When the program directs the meter
to send out a reading, the meter may be able to transmit to the bus
the iatest reading if it is stored in a buffer. Another method would
be to hold the meter in standby mode until the TRIGGER command
is received from the controller. This will initiate a conversion cycle
which then can transmit data to the bus by means of the TALK
command. The choice of which method to use for the best operating

Increasing GPIB System Performance 155

speed of the system depends upon the application and hardware
available.

DATA TRANSFER

In order for the interface system to be useful, it is usually necessary
for measurement or other data to be transferred over the bus from
one instrument to another, and this part of the communication
sequence can take a large part of the time required to accomplish
the necessary tests. Data transfer time is defined as the time required
for one device to transfer data to another. This will depend upon
the number of data bytes that are to be transferred and the data
transfer rate.

The IEEE-488 document specifies a maximum data rate of 250
kilobytes per second over a distance of 20 meters with one device
every 2 meters of cable using open collector drivers. This rate can
be 500 kilobytes per second if the drivers are designed with tri-state
outputs (interface capability E2).

The data transfer rate can be further increased by restricting the
system to certain requirements. Up to 1 megabyte per second can
be achieved if the cable length is limited to 15 meters total length
with one device connected every meter, and the maximum
capacitance of each device on each line is 50-picofarads
capacitance (except REN and IFC). All high-rate talkers should use
a minimum multiline message settling time (T1 interface
capability) of 350 nanoseconds. Buffered data byte storage in the
devices provides additional advantages.

Although the data transfer rate for GPIP devices is usually
specified by the manufacturer, the actual rate when operating in a
real system with other GPIB instruments and devices will depend
on a number of factors and will most certainly be less. Because the
IEEE-488 system is asynchronous, any data transfer must take

156 |IEEE-488 GPIB Manual

place at a rate which is determined by the slowest addressed
receptor. When one such device is much slower than all others, the
data transfer rate will be approximately equal to that device’s rate.
Because of this, it would not be possible to improve the data transfer
rate by using faster instruments on the bus unless the speed of the
siowest unit is addressed first.

Precision measurements typically take the greatest portion of the
time when compared to the microsecond response times in modern
desktop and minicomputers. Five and one-half digit voltage meas-
urements using standard analog-to-digital techniques, narrow band
spectrum analysis, and precision low-frequency counting are ex-
amples of slow real-time measurement processes. Smart instru-
ments and peripherals can provide easier and faster digital signal
processing such as high-speed sampling, burst measurements, and
block memory transfers. These techniques will create increased
demands on the GPIB system.

One method to achieve increased performance with high-speed
talkers is by operating the instrument in talk-only function and
opening up a direct memory access (DMA) channel to transfer the
data directly into the controller’s memory. The talker should be
operated in its automatic retriggering mode so that a new measure-
ment is initiated as soon as it has finished the previous one. With
such fast data transfer the instrument must be able to send the
readings over the IEEE-488 bus within the time it takes to generate
a new set of data. To ensure that the bus gets instant access to the
controller’s memory, its processor may have to be temporarily
halted while the fast I/O sequence takes place, and a mechanism
must be implemented in the software to return control to the
program when the DMA buffer is full.

Some IEEE-488 controllers have more than one port, and one
may be faster than the other. The Tektronix 4041 system controller,
for example, provides a optional high-speed port which is capable
of data transfers using direct memory access. The higher-speed
instruments and those which transfer the most data should be placed

Increasing GPIB System Performance 157

on the faster port. Slower instruments, if they are not involved with
most data transfers, do not need to be placed on a different bus.

If two or more instruments regularly send data to each other,
avoid separating them. It may be possible to have such units
addressed to communicate with each other without involving the
controller. It would be poor practice to place two instruments which
transfer data between them on different buses. To do so would use
up much valuable time as the data would have to pass through the
controller as it is transferred from one bus to the other.

When it is necessary to transmit large amounts of data over the
bus, it would be more efficient to use the binary code instead of
ASCII, which in a typical system may provide 2 to 1 or greater
reduction in the number of bytes that would be required. An ASCII
number requires 1 byte for each digit, while the same byte can be
used to transmit a far larger number in binary. The number 255
would require 3 bytes if coded in ASCII, but a single byte in binary
(11111111) could be used to transmit the same number. When more
than 1 byte is used to transmit data in binary, the difference becomes
astronomical. Three bytes coded in binary can be used to transmit
the number 16,777,225. That’s equivalent to 8 ASCII bytes.

The Tektronix Codes and Formais document calls out a specific
“binary bilock argument” which must be used when transferring
data in binary. This is illustrated in Figure 10-2. The binary block
argument must begin with the percent character, %, followed by a
set of bytes. Immediately following the % character is a 2-byte field
which is a 16-bit binary integer that specifies the number of data
bytes to follow. A final byte contains an 8-bit checksum to allow
the listener to verify that the data contained within the binary integer
and binary data bytes is valid. It would be prudent to program the
listener to calculate the checksum of the binary block transfer to
ensure that the message received was correct.

When using the binary block transfer, it is important to use the
EOI terminator at the end of the message to avoid the possibility
that a binary block data transmission could coincidentally contain

158 IEEE-488 GPIB Manual

MIXED DATA MESSAGE UNIT

BINARY
HEADER SPACE BLOCK COMMA OPTIONAL
ARGUMENT ARGUMENT
I% | [m] [em| lsm’.l [avﬂ |mn=l [m] [avn:l Bvre
18 BIT BINARY
vacor secenme | | oA | [oreex
THE NUMBER OF | N
DATA BYTES TO
FOLLOW, INCLUDING
CHECKSUM.

Figure 10-2. Structure of binary block argument.

the ASCII CR/LF character. A listener programmed to respond to
such a terminator would stop listening in the middle of the trans-
mission and the binary data would be lost.

DATA PROCESSING

Data processing time is a significant factor in GPIB performance,
and it will depend on not only the hardware used, but the method
by which the data is processed by the commands of the sofiware.
A large part of the time required for this task is a function of the
speed of the controller; it makes good sense to choose one which
is compatible with the desired time that can be devoted to process-
ing. A simple way to measure data processing time is to run a
sample program and allow the controller to measure the time
required by means of its buiit-in reai time clock. This easily
implemented method can be very valuable comparing one software
program or one controller with another.

Increasing GPIB System Performance 159

It is often possible to allow smart instruments on the bus to share
the burden of data processing. For example, it would be faster to
send a measurement result to the controller rather than transmitting
a large number of data bytes which must be processed by the
controller. While the instruments on the bus are being used in this
way, it will be possible for the controller to concentrate on the next
task at hand. In effect, there would be two or more instruments in
the system processing data at the same time.

If the system allows queuing of processing tasks, this can be used
to further increase system performance. By stacking these tasks, it
becomes possible to perform them at a time when it is convenient
for the controller or instrument to handle.

THE HUMAN INTERFACE

Since the IEEE-488 interface bus was first available to provide the
capability of automatic test systems, it has improved steadily with
dramatic speed over its relatively short life. Today there are literally
thousands of instruments available, and a vast selection of control-
lers, hardware, and software to make it possible to design almost
any test setup imagined. But the most sophisticated system is no
better than the human technician or operator which must make it
work. Human interaction is by and large the weakest link in any
automatic test setup.

It is the job of the software engineer to ensure that any possible
ambiguity or communication problem with the test technician is
designed out of the system. Admittedly, this is much easier to say
than do. But the tools to accomplish this are readily at hand, in the
form of a computer display CRT, keyboard, touch screen, and
mouse.

One of the most difficult parts of writing a test sequence which
a totally unfamiliar operator must use is to make the instructions
clear enough so that no possible misinterpretation can be made. It

160 IEEE-488 GPIB Manual

is all too easy to skip over an obvious point only to find that the
technician who must follow the instructions is totally confused. One
way to eliminate most of these problems is to have a “dress
rehearsal” of the test sequence with a technician who is totally
unfamiliar with the instruments or system. This method can be quite
successful, but it may require several revisions of the original test
program before the engineer is satisfied that it has been made as
foolproof as possible.

The display CRT can be used very effectively to state the exact
instructions which must be followed. The software engineer must
anticipate any possible error or incorrect action by the operator and
prevent any possible damage or loss of valuable test time in the
event that a wrong key is pressed or an instrument is not properly
connected or adjusted. It is always best to lead the operator through
the test sequence, one step at a time using prompts, rather than
assume that he or she can perform a multistep operation no matter
how simple it may be. Simple graphics or screen menus can be very
valuable tools to accomplish this.

As one gathers experience writing test programs, soon each
succeeding program will be morc clegant and troublefice than the
previous one. We learn from our mistakes, and this seems to
confirm ihe saying that experience is ihe besi teacher.

Chapter 11

Case Histories and
Applications of the
IEEE-488 Bus System

Although one may be very knowledgeable about the information
presented in the preceding chapters of this book, there is no sub-
stitute for an actual hands-on exercise of a real world application
of the IEEE-488 Interface System to appreciate its vast potential.
The purpose of this section is to share with you some very real
applications of automatic test systems and to show how some of
these problems were solved using GPIB components. While the
following test setups and ATE programming sequences may not be
representative of your particular application, it is hoped that they
will provide you with some insight as to how to design test positions
and write software for an IEEE-488 automatic test station and
enhance the automatic testing of your product.

161

162 IEEE-488 GPIB Manual

STATIC
PORT

PITOT
PORT

Figure 11-1. Simplified diagram of airspeed indicator showing capsule and
mechanical linkage to pointer.

AIRSPEED CAPSULE DISPLACEMENT

Pneumatic airspeed indicators, as used in all kinds of aircraft,
contain some kind of pressure transducer which exhibits a mechani-
cal displacement in response to air pressure. These transducers are
commonly referred to as capsules. An airspeed indicator in an
aircrafiis driven by pressure ihai is deveioped by a piioi tube, which
is simply a length of metal tubing which has an open end exposed
to the relative wind. As the speed of the aircraft increases, the
pressure developed by the pitot tube also increases. This relation-
ship between airspeed and pressure permits the design of an
airspeed indicator in which the displacement of the capsule, through
a mechanical linkage and gear train, drives a pointer. A simplified
illustration of this technique is illustrated in Figure 11-1. A
pneumatic airspeed indicator, as opposed to an electronic device,
has one important advantage: It will function properly in the event
of a power failure in the aircraft.

Because we are dealing with aircraft instruments that have a
direct bearing on human safety, airspeed indicators must have a
certain guaranteed accuracy so that the pilot of the aircraft knows
his or her airspeed at all times. As a result, the translation of pitot

Case Histories and Applications 163

pressure to mechanical displacement in the transducer must be held
to within very tight tolerances. This requires accurate instrumenta-
tion to measure capsule displacement versus air pressure.

Before sophisticated elecronic instrumentation came into being,
the usual method of measuring airspeed capsule displacement was
to provide a pressure/vacuum source, varied by a test technician in
accordance with standard airspeed/pressure tables, to drive the
capsule. Its expansion as a result of the pressure was measured with
an accurate mechanical device such as a micrometer. The results
were logged on a test data sheet and compared to the specification
of the capsule. Accuracies of .001 inch and better were required.

This test sequence was time-consuming and could be subjected
to error. The test technician could improperly set the pressure/vac-
uum source at a given check point or could make an error in the
reading of the micrometer. Even worse, a tired technician could
allow a transducer to pass the test, even though it did not meet
accuracy specifications.

An automatic test station, operable without any form of human
intervention (except to connect the unit under test and monitor the
test sequence), solves this problem very nicely. Not only does the
system provide accuracy equal to or better than the old method, it
produces a hard copy of the test data and flags any unit that falls
out of specification. Another advantage which cannot be over-
looked is the improvement in speed. The automatic system can test
airspeed capsules faster than a human.

To assemble an automatic displacement measuring system, the
following state-of-the-art instruments were required:

1. Anoptical displacement detector which generates an analog
voltage that is a linear function of the distance between
its sensor and the capsule. Keyence model PA1830 Sensor
and model PA1801 controller (Figure 11-2), manufactured
by Keyence Corporation of America, Fair Lawn, New Jer-

164 IEEE-488 GPIB Manual

Figure 11-2. Keyence optical displacement sensor. Courtesy of Keyence Cor-
poration.

sey, was used. This instrument provides a dispiacement
measurement range of +5 millimeters (reference distance 40
millimeters) with an acéuracy of 1 percent +5 micrometers.
The sensor controller provides an output voltage of zero to
45 volts at the maximum measurement distance of 5 milli-
meters.

Case Histories and Applications 165

2. Acalibrated pressure/vacuum source which can be remotely
controlled by means of an analog voltage. The Mensor
model 12275 precision pressure controller, manufactured
by Mensor Corporation, San Marcos, Texas, was used. This
unit provides an accurate differential pressure, from 0 to 12
inches of mercury, when driven by a 0 to 5-volt dc power
source. The controlled pressure, which is expressed in
inches of mercury, is a linear function of the remote driving
voltage.

3. Adc power source containing a digital to analog converter,
to be accurately programmed through a GPIB digital I/O
interface. The power supply containing the converter was
constructed in-house, since commercial programmable sup-
plies available at the time were not capable of resolving
voltages to 1 millivolt, as required by the desired pressure
accuracy. The digital I/O interface used was the Seitz model
6450P general-purpose parallel interface, equipped with the
64-bit 1/0 option, manufactured by Seitz Technical Prod-
ucts, Avondale, Pennsylvania.

In addition to the instruments described above a GPIB digital
voltmeter, Fluke model 8840A, was used to measure the output of
the Keyence optical displacement instrument. The controller in this
test system was a Hewlett-Packard model HP85B computer. Figure
11-3 illustrates the test setup.

The capsule is tested in a sealed chamber by subjecting it to a
differential pressure. Simulated pitot pressure is applied to the
capsule-sensing orifice, and the ambient pressure within the cham-
ber, called static pressure, is exposed to the low side of the pressure
controller. This simulates the actual operating conditions of the
capsule when it is sensing pitot pressure in the aircraft.

166 IEEE-488 GP!B Manual

ALTITUDE
TEST CHAMBER

MENSOR STATIC LINE

PRESSURE -
CONTROLLER [

PITOT UNE CAPSULE SENSOR
8us
1]
CUSTOM DWM SENSOR
POWER GPIB ADDRESS 03 C
SUPPLY CONTROLLER

GPIB ADDRESS 01

BUS
—
HP 858
GPIB
CONTROLLER

Figure 11-3. Capsule displacement test setup.

The sensor assembly of the displacement instrument must also
be placed in the same chamber, with a cable passing through to the
outside to conncect to its controller. A test fixture within the chamber
provides the proper mechanical relationship between the capsule
and optical detector, which is set to 40 millimeters when the capsuie
is at rest.

The automatic test sequence provides prompts in the computer
display to properly lead the technician during the test, which checks
capsuie displacement at nine specified airspeed points from 0 to
350 knots. A graph containing the upper and lower test limits of the
capsule, and the test results, is produced. A printout of the deviation
from spec ai each checkpoini is prinied by ihe compuier, inciuding
a second order calculation of the change in deviation from one
checkpoint to the next.

Program 11-1 is the actual software which was used to perform
the test sequence. In this application, the Seitz I/O interface was
assigned an address of 01 and the Fluke DVM an address of 03.

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

Case Histories and Applications

! CAPSULE TEST PROGRAM
DIM Q(9),R(9),21(9),22(9)

FOR X=0 TO 8

READ Q(X)

DATA 0,40,60,100,150,200,250,300,350
NEXT X

FOR X=0 TO 8

READ R(X)

167

DATA 0,.0049,.0106,.0274,.0519,.0746,.095,.1136,.1304

NEXT X

IMAGE 3D,4XD.DDDD,6X,D.DDDD
CLEAR

OUTPUT 703 ;"F1R3S0TODO"
A1=29.92126

B1=518.67

C1=.00356616

D1=5.2559
B3=160.45478*10"-9
C3=6076.1135/3600

D3=3.5

DISP "THIS PROGRAM WILL CHECK AIRSPEED CAPSULE"

DISP "DISPLACEMENT FROM ZERC TO 350 KNOTS AIRSPEED"

DISP

DISP "SET MENSOR TO REMOTE CONTROL FUNCTION"
DISP

DISP "THEN PRESS CONTINUE KEY TO START THE TEST"
PAUSE

CLEAR

PRINT "A/S CAPSULE DISPLACEMENT TEST"

PRINT "FROM ZERO TO 350 KNOTS"

PRINT "A/S DEFLECTION ERROR"

PRINT

Program 11-1 (continued)

168 IEEE-488 GPIB Manual

330 ENTER 703 ; Vi

340 V1=INT (1000*V1+.5)/1000

350 FOR X=0 TO 8

360 P=Al*((1+B3*(Q(X)*C3)"2)"D3-1)
370 N=P*4095/3072

380 A2=INT (FP (N)*256)

390 B2=INT (N)

400 DISP Q(X);"KNOTS"

410 OUTPUT 701 USING "#,B" ; A2,B2
420 SEND 7 ; UNL

430 WAIT 5000

440 ENTER 703 ; V2

450 V2=INT (1000*V2+.5)/1000

460 2=V2-V1

470 21(X)=2*.03937

480 Z2(X)=INT (10000*Z1{X)+.5)/10000
490 PRINT USING 110 ; Q(X),-%2(X),~22(X)-R(X)
500 NEXT X

10 PRINT

0 GCLEAR

530 PEN 1

540 SCALE 0,350,08,.15

550 XAXIS 0,50

560 YAXIS 0,.01

570 MOVE 85,.006

580 LABEL "100"

590 MOVE 185,.006

600 LABEL "200"

610 MOVE 285,.006

620 LABEL "300"

630 MOVE 9,.046

640 LABEL ".05"

Program 11-1 (continued)

Case Histories and Applications 169

650 MOVE 9,.096

660 LABEL ".10"

670 MOVE 9,.142

680 LABEL ".15"

690 MOVE 200, .02

700 LABEL "KNOTS"

710 MOVE 75,.142

720 LABEL "DISPL"

730 FOR X=0 TO 8

740 PLOT Q(X),1.1*R(X)

750 NEXT X

760 PEN UP

770 FOR X=0 TO 8

780 PLOT Q(X),.9*R(X)

790 NEXT X

800 PEN UP

810 FOR X=0 TO 8

820 PLOT Q(X),-22(X)

830 NEXT X

840 COPY

850 PRINT " A/S DELTA 1 DELTA 2"

860 PRINT

870 PRINT USING 110 ; Q(1);,-22(1),-22(1)+22(0)

880 FOR X=2 TO 8

890 PRINT USING 110 ;Q(X),-22(X)+22(X-1),
-Z2(X)+2%22(X-1)-22(X-2)

900 NEXT X

910 CLEAR

920 DISP "TEST IS COMPLETED"

930 END

Program 11-1

170 IEEE-488 GPIB Manual

The following explains the details of the capsule displacement
test as implemented in Program 11-1:

Line 20 dimensions four variables which will be used in the
calculations during the test.

Lines 30 through 60 assign airspeed checkpoint values to vari-
able Q(X).

Lines 70 through 100 assign displacement specifications, in
inches, to variable R(X).

Line 110 specifies a format for the test data report that will be
printed by the computer.

Line 120 clears the computer display screen.

Line 130 programs the Fluke DVM to dc function, 20-volt range,
slow reading rate, internal trigger mode, and normal display.

Lines 140 through 200 assign constants to variables which will
be used in making calculations during the test.

Lines 210 through 260 provide a computer display to prompt the
technician.

Line 270 halts the program with the prompts displayed, so that
ihie iechnician can sei ihic Mensor pressure controlier to the
proper operating mode. When the technician is ready to resume

the test sequence, the continue key is pressed.

Lines 290 through 320 direct the computer to print the heading
of the test data form.

Case Histories and Applications 171

Line 330 directs the voltmeter to send a reading to the controller,
which will store it in variable V1. This reading represents any
possible offset voltage, produced by the displacement instru-
ment, due to any position error in the test setup.

Line 340 rounds out the value stored in V1 to three decimal
places.

Lines 350 through 500 are the complete test sequence which
takes nine measurements, at nine different airspeeds (including
zero) of capsule displacement. This is accomplished in a FOR-
NEXT loop.

Line 360 calculates air pressure required for the selected airspeed
of the test.

Lines 370 through 390 perform a mathematical calculation to
produce two integers, A2 and B2. These integers are the numbers
that will be required by the Seitz I/O interface to set a 12-bit word
in its I/O output lines which are used to feed a 12-bit digital to
analog converter in the programmable power supply. The result
of this is that the supply will then generate the proper voltage to
set the Mensor pressure controller to the airspeed represented by
variable Q(X).

Line 400 displays the current airspeed being generated by the
Mensor.

Line 410 directs the Seitz I/0 interface to set the bits in its first
12 output lines in accordance with the calculations of lines 370
through 390.

Line 420 resets the Seitz I/O interface so that the next command
to it will set the same 1/O lines. This command is necessary

172 IEEE-488 GPIB Manual

because the Seitz unit has a total of 64 output lines and would
normally respond to subsequent commands by setting the next
121/0 lines.

Line 430 provides a 5-second waiting period for the pressure
controller and capsule to stabilize before a displacement meas-
urement is taken.

Line 440 directs the voltmeter to send its next reading to variable
V2. This reading is the output voltage of the optical displacement
instrument, and it represents the magnitude of expansion of the
capsule due to the simulated airspeed pressure.

Line 450 rounds out V2 to three decimal places.

Line 460 calculates the net displacement of the capsule by
subtracting the offset voltage measured in line 330.

Line 470 converts the capsule displacement from millimeters to
inches, since the optical detector uses metric units of measure.

Line 480 rounds out the displacement measurement to four
decimal places.

Line 490 directs the computer to print the current airspeed,
displacement, and deviation from the displacement specification
at this airspeed.

Lines 520 through 830 direct the computer to generate a graph
of the complete test sequence, showing the actual performance
of the capsule as well as the upper and lower limits of acceptable
displacement. The graph, displayed on the controller’s screen,
provides an immediate visual indication of a pass or fail capsule.
Figure 11-4 illustrates the CRT display.

Case Histories and Applications 173

.15

.10

.05

100 200 300
l l] I I l J

Figure 11-4. Display of capsule test results.

Line 840 directs the computer to print a hard copy of the graph,
for a permianent record of the test.

Lines 850 through 900 perform a calculation of deviation, called
delta 1, and a second-order effect, called delta 2, which is the
change in capsule error from one airspeed to the next. This
parameter is used to diagnose any possible mechanical calibra-
tion errors in the capsule.

Line 920 informs the technician that the test has been completed
so that the next capsule can be checked.

Figure 11-4 illustrates a typical graph of results which was
printed by the computer. It shows the upper and lower limits of
capsule displacement versus airspeed, as well as the actual capsule
performance. This test data graph is a permanent record of the
accuracy of the unit. Note that any capsule which did not meet
specification is readily detected by means of the graph, which could

174 IEEE-488 GPIB Manual

provide the design engineer with valuable information to help
correct the problem.

The above software program was essentially a first attempt to
automate a production capsule displacement test. As with any
computer program, a second look often can provide alternative
methods, possibly more eiegant, of performing the same test.
Perhaps a revised program could produce greater accuracy or avoid
a possible booby trap.

For example, let’s look at line 430, which directs the test se-
quence to stop for 5 seconds while the pressure controller and
capsule stabilize so that the measurement that follows represents a
true reading of displacement. The time of 5 seconds was determined
empirically; it seemed that the displacement sensor output became
steady enough for a reading after this amount of time had passed.
But suppose, in another test position, the time required was greater
than 5 seconds? Here we have a possible situation which could
produce disastrous results.

The solution to this problem is actually very simple, since we
have a computer and automatic test station at our disposal which
will rapidly perform any number of measurements and calculations.
A better way to determine if a varying parameter has stabilized is
to write a subroutine which continuously stores readings in alter-
nate variables, such as V2 and V3. The routine monitors the
difference between any two successive readings, and when it is
within an acceptable limit, the latest reading is taken to be the final
one. The program sequence can then return to the next step of the
test.

Another improvement in the capsule test can be found in the
printing of the test data form by the controller. If the test limits of
the capsule were stored in additional variables, such as H(X) for
the high limit and L(X) for the low limit, the computer could
perform a “greater than” or “less than” comparison and print
directly on the test data form a pass or fail notation. The level of

Case Histories and Applications 175

sophistication of any automatic test sequence is limited only by
your imagination.

As you can see, this very involved test sequence of a pneumatic
airspeed capsule has been performed by a simple test program,
using a relatively small number of instruments and hardware. A
calculation of the amount of technician time that could be saved in
a production run of hundreds or thousands of capsules would show
that the payback time of the cost of instrumentation would be very
short.

SERVO ALTIMETER RATE MEASUREMENT

This application of the GPIB system was brought about through a
unique test situation which could not be satisfactorily solved by
ordinary test methods. In the case of servo altimeter rate measure-
ment, it was not possible for the technician to make a realistic,
repeatable measurement; it required the objectivity and power of a
computer. Here is a perfect example of how an automatic GPIB test
system provided an answer to an unusual production test problem.

A servo altimeter is an aircraft instrument which provides a
reading of altitude by means of a motor driven gear train and
pointer. The advantage of such an instrument is that the motor is
capable of driving, at a fast rate of speed, not only the pointer
mechanism but other mechanical components as well. A purely
pneumatic capsule driven altimeter cannot perform such a function
since the load on the capsule must be held to an absolute minimum
for accurate altitude readings.

One of the components that a servo altimeter may contain is a
tachometer, which is actually a small generator that produces an
output voltage which is a function of its shaft speed, or rpm. The
tachometer is mechanically coupled to the altimeter gear train so
that the rate of climb or rate of descent of the aircraft can be

176 IEEE-488 GPIB Manuai

translated into a voltage. This voltage, called rate output, is one of
the test parameters of the servo altimeter, and it was made at a
constant rate of climb or descent of 4000 feet per minute.

The particular test setup in which a seemingly impossible ac-
curate rate measurement had to be made involved a line of servo
altimeters which exhibited a certain amount of gear train jitter. This
was inherent in the design of the mechanics of the servo unit, and
there was no way to eliminate it. Since the specifications for the
rate output required an average measurement with an accuracy of
+5 percent, the test equipment included various forms of long time-
constant filters which removed the jitter in the rate voltage reading
and produced an average output. Without using any form of filter-
ing, a digital meter could easily measure instantaneous voltage
excursions of 20 percent or more from the average rate output value.

This system of rate measurement was mediocre at best; units that
were passed by test technicians were rejected by quality control
personnel. Part of the problem was the subjectivity of the measure-
ment, which varied as the altimeter was exercised through a large
range of altitude. After making several attempts to find ways to
avoid QC rejects, it became apparent that the human element of this
test had to be eliminated. This was a natural for an automatic test
system using GPIB components.

1t was decided that a large number of instantaneous rate output
voltage measurements would be taken over a specified change in
altitude, both ascending and descending. Each voltage reading
would be stored in the controller’s memory, and the calculated
average would be printed out on a test data form as the measured
rate output of the unit. As the measurements were being assimilated
by the computer, a graph of rate output versus altitude was
reproduced on the CRT. Since this technique does not depend upon
any human interpretation of meter readings, the results of the test
were remarkably repeatable regardless of which person ran the test.
QC rejections were virtually eliminated. An additional benefit of
this technique of rate measurement, totally unexpected, was in the

Case Histories and Applications 177

Figure 11-5.

Servo altimeter rate test setup.

MENSOR ALTIMETER
ALTITUDE/ VACUUM LINE UNDER RATE
VERTICAL SPEED TEST OUTPUT
CONTROLLER
ALTITUDE
DECODER
BUS
L 1 I
HP 85B DVM
CONTROLLER GRIB ADDRESS 23

graph reproduced on the controller CRT and test data form. A
trained technician could analyze the performance of rejected units
and often determine the cause of failure.

Figure 11-5 illustrates the test setup for the servo altimeter rate
measurement. The controller for the test sequence was the HP 85B
computer. This automatic test station required the following in-
strumentation which was readily available, except for an altitude
decoding instrument, designed and constructed in house:

1. Hewlett-Packard 3478A digital voltmeter; set to GPIB ad-
dress 23.
2. Mensor altitude/vertical speed test set, model 10620, to
provide a constant rate of change in simulated altitude as
required by the test.
3. Custom designed interface unit which contains logic cir-
cuitry to detect specific altitude levels. This was ac-
complished by monitoring a built-in test altimeter
containing a transponder mode C altitude reporting encoder

178 IEEE-488 GP!B Manual

and decoding the altitude reporting digital output word of
the altimeter. The GPIB voltmeter was used to inform the
controller of the crossover of the chosen altitude points of
the test.

The technician performing the test sequence was directed by
prompts on the controller display CRT to set the manually operated
altitude test set to the required altitudes and rate of climb or descent.
Once this was done, the automatic test sequence took over and ran
the complete climb and descent without the need for any human
interaction. The test sequence, provided by the software, consists
of the following steps:

1. The technician is instructed to enter via the keyboard per-
tinent data which will be printed on the test data produced
by the computer.

2. Thetechnician is instructed to raise the simulated altitude to
18000 feet, set the climb rate to 4000 feet per minute, and
stait the automatic test sequence.

3. The computer generates a graph on the display CRT which
provides a visual readout of the measurements of rate volt-
age as they are being taken. This enables the technician to
abort the test if it is obvious that the rate measurement is out
of spec.

4. The automatic test sequence instructs the voltmeter to take
100 instantaneous measurements of rate output over an
altitude change of 4000 feet (1 minute of time), and stores
them in computer memory.

5. When the climb test is completed, the program pauses so
that the resulting graph display can be assimilated by the
technician. The computed average rate measurement is
printed on the test data form.

Case Histories and Applications 179

6. The technician is directed to start the descend test by raising
the simulated altitude to 28,000 feet, set the descend rate to
4000 feet per minute, and start the automatic sequence.

7. The computer takes control of the test and, as done pre-
viously in the climb test, a graph of results is plotted as the
measurements are being taken. The technician can abort the
test if the results are obviously out of spec.

8. When the 100 measurements are completed over a period
of 1 minute, the computer prints the calculated average on
the test data form. The graph remains on the display CRT
until the technician manually causes the sequence to resume
by pressing the continue key.

9. The computer analyzes the test results and prints pass or fail
for each of the two parts of the test.

Program 11-2, which follows, is the actual program which was
used in the servo altimeter rate measurement sequence.

The following will serve to explain the pertinent steps of Pro-
gram 11-2:

Line 30 sets aside sections of computer memory which will store
the climb and descend rate measurements.

Lines 40 through 290 provide display prompts on the screen of
the computer to instruct the technician in the proper administra-
tion of the test and prints on the test data form the identification
of the unit under test as well as the name of the tester.

Lines 310 through 520 instruct the computer to prepare a graph
display with the desired coordinates and scale factors.

Line 530 sets the operating functions and range scale of the
voltmeter.

180

10

20

30

40

50

60

70

80

90

100
105
110
120
130
140
i50
160
170
180
19¢
200
210
220
230
240
250
260
270
280
290
300

IEEE-488 GPIB Manual

CLEAR

DIM A$[20]

DIM A(100).B(100)

DISP "THIS PROGRAM WILL CHECK RATE OUTPUT"
DISP "FOLLOW INSTRUCTIONS AS DISPLAYED HERE"
DISP "PRESS CONTINUE KEY TO START TEST"

PAUSE

CLEAR

DISP "TYPE UNIT SERIAL NUMBER, YOUR NAME, AND"
DISP "TODAY'S DATE SEPARATED BY COMMAS."

DISP "THEN PRESS END LINE KEY."

INPUT A$,BS$,CS

CLEAR

PRINT A$;" RATE TEST"

PRINT "DATED ";C$;" BY ";B$

ON KEY# 1,"CLIMB" GOSUB 1440

ON KEY# 2,"DESCEND" GOSUB 1490

DISP "NOTE: TO RESTART THE CLIMB TEST PRESS KEY K1"
DISP " TO RESTART THE DESCEND TEST PRESS KEY K2"
DISP "RAISE ALTIMETER TC 18000 FEET"

DISP "THEN PRESS CONTINUE KEY"

KEY LABEL

PAUSE

CLEAR

DISP "WHEN THE CLIMB TEST IS COMPLETED THE"
DISP "COMPUTER WILL SOUND."

DISP "AT THAT TIME PRESS CONTINUE KEY"

DISP "TO START THE DESCEND TEST"

DLISP "SET MENSOR TO CLIMB AT 4000 FEET/MINUTE"
DISP "THEN PRESS CONTINUE KEY"

PAUSE

Program 11-2 (continued)

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

Case Histories and Applications

PEN UP

GCLEAR

SCALE 1,100,.9,1.1
XBXIS 1,12.5

YAXIS 1,.01

MOVE 2,.9

LABEL ".9"

MOVE 2,.945

LABEL ".95"

MOVE 2,1.045

LABEL "1.05"

MOVE 2,1.094

LABEL "1.1"

MOVE 22,.99

LABEL "21K"

MOVE 48, .99

LABEL "22K"

MOVE 73,.99

LABEL "23K"

MOVE 16,1.09

LABEL "CLIMB RATE VOLTAGE OUTPUT"
PEN UP

OUTPUT 723 ;"F2RIN4OTID1"
ENTER 723 ; V

IF V<4 THEN 560 ELSE 540
TO=TIME

WAIT 19000

FOR X=1 TO 100
ENTER 723 ; A(X)
PLOT X,A(X)

WAIT 28

NEXT X

Program 11-2 (continued)

181

182 IEEE-488 GPIB Manual

630 WAIT 5000

640 ENTER 723 ; V

650 IF V>2 THEN 660 ELSE 640

660 T1=TIME

670 PRINT "MENSOR TIME = ";T1-T0

680 GOSUB 1540

690 PAUSE

700 C=0

710 FOR X=1 TO 100

720 C=C+A(X)

730 NEXT X

740 DISP "CLIMB RATE OUTPUT = ";INT (1000%*C/100+.5)/1000
750 PRINT "CLIMB RATE - ";INT (1000*C/100+.5)/1000
760 DISP "PRESS CONTINUE KEY TO START DESCEND TEST"
770 PAUSE

780 CLEAR

790 DISP "RAISE ALTITUDE TO 28000 FEET,"

800 DISP "THEN PRESS CONTINUE KEY"

810 PAUSE

920 CLEAR

830 DISP "WHEN DESCEND TEST IS COMPLETED"

840 DISP "THE COMPUTER WILL SOUND."

850 DISP "PRESS CONTINUE KEY AT THAT TIME"

860 DISP "TO COMPLETE THE TEST"

870 DISP "TO START DESCEND TEST"

880 DISP "SET MENSOR TO DESCEND AT 4000 FEET/MINUTE®
890 DISP "THEN PRESS CONTINUE KEY"

900 PAUSE

0 TEN UE
0 GCLEAR

0 SCALE 1,100,.9,1.1

1

O W w

2
3

Program 11-2 (continued)

940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1240
1250

Case Histories and Applications

XAXIS 1,12.5

YAXIS 1,.01
MOVE 2,.9

LABEL ".9"
MOVE 2,.945
LABEL ".95"

MOVE 2,1.045

LABEL "1.05"

MOVE 2,1.094

LABEL "1.1"

MOVE 22,.99

LABEL "23K"

MOVE 48,.99

LABEL "22K"

MOVE 73,.99

LABEL "21K"

MOVE 16,1.09

LABEL "DESCEND RATE VOLTAGE OUTPUT"
PEN UP

OUTPUT 723 ;"F2RIN4ZOT1D1"
ENTER 723 ; V

IF V<4 THEN 1160 ELSE 1140
TO=TIME

WAIT 19000

FOR X=1 TO 100

ENTER 723 ; B(X)

PLOT X,B(X)

WAIT 28

NEXT X 1230 WAIT 5000
ENTER 723 ; V

IF V>2 THEN 1260 ELSE 1240

Program 11-2 (continued)

183

184 IEEE-488 GPIB Manuai

1260 T1=TIME

1270 PRINT "MENSOR TIME =";T1-T0

1280 GOSUB 1540

1290 PAUSE

1300 D=0

1310 FOR X=1 TO 100

1320 D=D+B(X)

1330 NEXT X

1340 DISP "DESCEND RATE OUTPUT = ";INT
(1000%D/100+.5)/1000

1350 PRINT "DESCEND RATE - ";INT (1000%*D/100+.5)/1000
1360 IF C/100>1.05 OR C100<.95 THEN 1370 ELSE 1380
1370 PRINT "ALTIMETER FAILED CLIMB TEST" € GOTO 1390
1380 PRINT "ALTIMETER PASSED CLIMB TEST"

1390 IF D/100>1.05 OR D/100<.95 THEN 1400 ELSE 1420
1400 PRINT "ALTIMETER FAILED DESCEND TEST"

1410 END

1420 PRINT "ALTIMETER PASSED DESCEND TEST"

1430 END

1440 CLEAR

1450 DISP "RETURN ALTIMETER TO 18000 FEET"

1460 DISP "THEN PRESS CONTINUE KEY®

1470 PAUSE

1480 GOTO 230

1490 CLEAR

1500 DISP "RETURN ALTIMETER TO 28000 FEET"

1510 DISP "THEN PRESS CONTINUE KEY"

1520 PAUSE

1530 GOTO 820

1540 FOR X=1 TO 10

1550 BEEP 130,100

Program 11-2 (continued)

Case Histories and Applications 185

1560 WAIT 20
1570 NEXT X
1580 RETURN

Program 11-2

Lines 540 and 550 form a recycling loop which halts the program
sequence until the altitude of the vacuum/pressure simulator
reaches 19,000 feet. This is accomplished through the logic
circuits of the in-house test unit which decodes the output of its
built-in altitude reporting encoder.

Line 560 provides a time reference for the start of the automatic
sequence, to measure the elapsed time which will be a 2-minute
interval during the 19K’to 27K change in simulated altitude at a
climb rate of 4000 feet per minute.

Line 570 provides a 19-second delay in the program to allow the
altimeter to reach an altitude of about 20,000 feet. The actual
altitude at the start of the rate measurement sequence is not a
significant parameter in this test.

Lines 580 through 620 form a FOR-NEXT loop which instructs
the voltmeter to take 100 rate measurements to be stored in
variable A(X). The measurements are spaced out by 28 mil-
liseconds (to provide 1 minute of measuring time) and each rate
measurement is plotted on the computer screen as it is assimilated
by the controller.

Lines 640 and 650 form a recycling loop which halts the program
until the decoded output of the altitude encoder informs the
computer that an altitude of 27,000 feet has been reached.

186 IEEE-488 GPIB Manual

Lines 660 and 670 allow the computer to calculate the time
interval required for the altitude simulator to cover the 19K to
27K altitude change. The result is printed on the test data form
and serves as a check of altitude simulater climb rate accuracy.

Line 680 is a subprogram which causes the computer to sound
and alert the technician that the climb test has been completed.

Lines 700 through 730 instruct the computer to add and store the
set of 100 rate measurement readings.

Lines 740 through 890 print the climb rate results on the test data
form and provide display prompts to the technician.

Lines 910 through 1360 provide the descend sequence, similar
to that described above for the climb test.

Lines 1370 through 1430 instruct the computer to print the
appropriate pass or fail flags on the test data form.

Lines 1440 through 1530 contain two subprograms which are
executed when the technician aborts the climb or descend test by
means of the user defined keys Ki and K2.

Figure 11-6 illustrates the resulting graph which is reproduced
on the computer CRT and test data sheet. Note the variation of
instantaneous rate measurements, as recorded by the computer.
Since the aircraft navigation system responds to only the average
rate output of the altimeter, the computed results of the test repre-
sent a meaningful rate output measurement.

Note that a custom designed interface unit as illustrated in Figure
11-6 would not be necessary in a test setup such as this if a GPIB
programmable altitude test set was available at the time. One such
test test set is available from Kollsman Instrument Company,

Case Histories and Applications 187

— CLIMB RATE VOLTAGE OUTPUT

S
N ==
X

i

[l

FTTTTTTTITT
i ©
3}

©
o

Figure 11-6. Graph of climb rate measurement.

Merrimack, New Hampshire. This fully programmable test set can
be programmed to simulate any altitude and vertical speed within
the capabilities of the instrument, greatly simplifying the automatic
test since it would relieve the technician of setting altitude levels
manually.

AIRCRAFT ENGINE RPM INSTRUMENT TESTING

The GPIB automatic test system can be implemented into almost
any test situation and is limited only by your imagination. An
example of this is in the testing of aircraft engine rpm instruments
which contain both digital and analog readouts, each of which
display percentage rpm. A test sequence using the IEEE-488 bus
can easily be designed, but it will require the interaction of a
technician to provide the analog and digital readings as the test
progresses. For a more automatic test sequence, it would be a simple

188 IEEE-488 GPIB Manual

—]
SIGNAL CUSTOM

GENERATOR == TEST SET UNIT UNDER TEST

GPIB ADDRESS 08

BUS

1

HP 85B
CONTROLLER

Figure 11-7. Engine RPM instrument test setup.

matter to provide a test connector in the unit under test (space
permitting) to report back to the controller the BCD logic ievels fed
to each digit of the display, but that would not check the readout
devices themselves. For analog readings, an optical sensor which
detects pointer position would be a very complicated and expensive
device. Here we have a situation in which the technician and
software can be effectively used to work together to enhance the
GPIB implementation of an automatic test station.

In this application of the interface system a signal generator is
used to provide a sine wave at selected frequencies to simulate the
aircraft engine rpm frequencies to which the instrument responds.
Ateach checkpoint the technician is instructed to read both displays
of the unit under test and enter the data via the computer keyboard.
The computer compares the data to the unit specifications which
are stored in its memory and prints the results of the test and a pass
or fail indication on the test data form.

In addition to the rpm test, the engine instrument was checked
for response time. This measurement is readily made with the
computer and technician working together, as shown in the program
illustrated below. Figure 11-7 shows the test setup.

Case Histories and Applications 189

The controller in this test sequence was the Hewlett-Packard
HP85B computer, and the signal generator was the Wavetek model
278 function generator set to GPIB address 09. A custom test set,
connected between the signal generator and unit under test,
provided the necessary power to drive the engine rpm instrument.
Program 11-3, which follows, is the program that was used:

The following is an explanation of the steps of the Program 11-3:

Line 30 clears the Wavetek function generator to default status.

Line 40 establishes memory space in the computer for the
variables in the program lines that follow.

Line 50 is a composite string which contains all of the frequency
commands which will be used to set generator frequency.

Lines 60 through 90 contain the 13 checkpoints of the percentage
rpm test which are stored in variable R(X).

Line 110 contains astring, A$, which is to be used for the display
prompts to the technician.

Lines 160 through 180 set the function generator to the desired
operating mode and disable its front panel keyboard.

Lines 200 through 310 are a FOR-NEXT loop which contains
the 13 rpm checkpoints in which the technician is instructed to
read the displays and enter the data into the computer via the
keyboard. As each set of data is entered, the computer sets the
frequency for the next test until all checkpoints are measured.

Lines 320 through 620 are the sequence which directs the com-
puter to print the test results on the test data form. Note that any
failure of the unit at any of the checkpoints is flagged.

190

10
20
30
40
50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
275
280
290

IEEE-488 GPIB Manual

! ENGINE RPM INSTRUMENT TEST
CLEAR
CLEAR 709
DIM A$[29],F$[65],A(61),B(61),R(61)
F$="F00.0F07.0F14.0F21.0F28.0F35.0F42.
0F49.0F56.0F63.0F70.0F72.8F77.0"

FOR X=1 TO 61 STEP 5

DATA 0,10,20,30,40,50,60,70,80,90,100,104,110
READ R(X)

NEXT X

A$="PRESS CONTINUE KEY WHEN READY"

DISP "THIS PROGRAM WILL CHECK ENGINE RPM INSTRUMENTS"
DISP AS

PAUSE

CLEAR

PRINT "ENGINE RPM TEST DATA®

REMOTE 709

LOCAL LOCKOUT 7

OUTPUT 709 ;"CO,B4,P0,U2.5,V2.5,D0,A5,F70.00"
QUTPUT 709 ;"I"

FOR X=1 TO 61 STEP 5

IF X>1 THEN 220 ELSE 270

OUTPUT 709 ;“P1I"

OUTPUT 709 ;F$[X,X+4]

DISP "RPM CHECK POINT = “;R(X)

OUTPUT 709 ;"I"

OUTPUT 709 ;"F"

DISP "TYPE IN DIGITAL AND ANALOG READINGS SEPARATED"
DISP "BY A COMMA"

DISP A$

INPUT D(X),A(X)

Program 11-3 (continued)

300
310
320
330
340
350
360
370
380
390
400

410
420
430
440
445
450
460
470
480
490
500
510
520
530
540
550
560
570
580

Case Histories and Applications 191

CLEAR

NEXT X

PRINT “TEST RESULTS"

PRINT “ANALOG DIAL"

PRINT USING "2X,3A,3X,4A,3X,5A"; "RPM", "DIAL", "ERROR"

FOR X=1 TO 61 STEP 5

IMAGE DDD.D,XX,DDD.D,XXX,DDDD.D

PRINT USING 360 ; R(X),A(X),A(X)-R(X)

NEXT X

PRINT "DIGITAL DIAL"

PRINT USING “2X,3A,3X,4A,3X,5A" ; "RPM","DISP",
"ERROR"

FOR X=1 TO 61 STEP 5

PRINT USING 360 ; R(X),D(X),D(X)-R(X)

NEXT X

PRINT "THIS UNIT HAS FAILED THE FOLLOWING RPM"

PRINT "CHECKPOINTS"

PRINT "ANALOG DIAL"

2=0

FOR X=1 TO 61 STEP 5

IF ABS (R(X)-A(X))>1 THEN 490 ELSE 510

PRINT R(X);TAB (8);A(X);TAB (17);A(X)-R(X)

2=2+1

NEXT X

IF 2>0 THEN 540 ELSE 530

PRINT "NONE"

PRINT "DIGITAL DISPLAY"

2=0

FOR X=1 TO 61 STEP 5

IF ABS (R(X)-D(X))>1 THEN 580 ELSE 600

PRINT R(X);TAB (8);D(X);TAB (17);D(X)-R(X)

Program 11-3 (continued)

192 IEEE-488 GPIB Manual

590 2=Z+1

600 NEXT X

610 IF 2>0 THEN 630 ELSE 620

620 PRINT "NONE" @ GOTO 630

630 DISP AS$

640 PAUSE

650 PRINT "RESPONSE TIME TEST"

660 CLEAR

670 DISP "RESPONSE TIME TEST"

680 REMOTE 709

690 LOCAL LOCKOUT 7

700 ouTPUT 7069 ;"C0,B4,P0,U2.5,D0,F91.66,A5,I"

710 OUTPUT 709 ;"F"

720 DISP "PRESS CONTINUE KEY WHILE WATCHING POINTER"
730 DISP "WHEN POINTER REACHES 110% PRESS CONTINUE"
735 DISP "KEY AGAIN"

740 PAUSE

750 OUTPUT 709 ;"P1lI"

760 TO=TIME

770 CLEAR

780 PAUSE

790 T1=TIME

800 CLEAR

810 PRINT "RESPONSE TIME =";T1-T0;" SECONDS"

820 IF T1-T0>1.5 THEN 830 ELSE 850

830 PRINT "UNIT FAILED RESPONSE TIME TEST" @ GOTO 860
840 CLEAR

850 PRINT "UNIT PASSED RESPONSE TIME TEST"

860 DISP "TEST IS COMPLETED"

870 END

Program 11-3

Case Histories and Applications 193

Lines 650 through 850 contain a response time test which uses
the computer real-time clock (and technician) to measure the
time required for the unit under test to respond to an abrupt
change in input frequency. The result of this test is summarized
on the test data form.

The Engine rpm test software described above contains some
programming features which do not appear in the previously
described applications. Note that in line 100 a string variable is used
to display a much used phrase. This saves computer program
memory. The same technique could be used when it is necessary to
print a given phrase many times. Line 50 contains a complex string
containing all GPIB commands which are to be sent to the function
generator. Using a five-step FOR-NEXT loop allows line 230 to
extract the desired command.

AIR DATA COMPUTER TEST

One of the most rewarding applications of the IEEE-488 automatic
test system was realized in the testing of a complex air data
computer which required a 3-hour QC verification check after the
unit was fully adjusted and tested by a technician. The GPIB test
setup reduced the time to about 40 minutes, automatically printed
the QCreport, and flagged any of the checkpoints that the unit under
test did not pass. In addition to reducing QC test time to only
one-quarter of what was previously required, it virtually eliminated
disputes between the test and QC sections of the production depart-
ment.

Figure 11-8 illustrates the test setup that was used. The controller
for this automatic test station was the Hewlett-Packard model
HP85B computer. The other instruments that were required were:

194

|IEEE-488 GPIB Manual

[1

Figure

STATIC
ALTITUDE UNE
CONTROLLER AIR DATA CUSTOM
COMPUTER TEST
UNDER TEST SET
AIRSPEED
CONTROLLER A
—
T
DUAL DC RELAY [1
POWER SUPPLY [SWITCHER DVM
GPIB ADDRESS 04 GPIB ADDRESS 03
0 | BUS
I —
HP 858
CONTROLLER

11-8. Air data computer test setup.

Fluke model 8840A GPIB controlled digital voltmeter with
a GPIB address of 03.

Two Mensor model 12275 precision pressure controllers,
onc to simulate altitude and the other to simulate airspeed.
Each unit was remotely controlled by 0- to 5-volt analog dc
source which provided the desired vacuum or pressure
output.

A dual dc power supply, constructed in house, which con-
tains analog circuitry which is externally controllable by
reiay closures. The power supply is used to generate two
discrete dc voltages that are used to set the desired altitude
and airspeed simulation of the test sequence.

ICS modei 4874A GPIB coniroiled reiay swiicher which
was used to contol the outputs of the power supply and direct
the input of the voltmeter in accordance with the test se-
quence. The relay switcher was assigned a GPIB address of
04.

Case Histories and Applications 195

AIRSPEED

ALTITUDE 100 150 | 200 | 250 | 300 | 350 | 375
0 002 093 | .182 | 271 |.358 | 442 | -
10K 031 136 | 238 | .336|.435 | .527 |.573
20K 067 | 189 | .306 | 416 |.S524 | .627 | 671
30K 115 255 .387| 511 |.628 |.729 | -
40K 173 335 | 484 616 - - -
S0K 264 | 456 | .624 - - - -

Figure 11-9. Air data computer test data matrix.

5. A custom test set to interface the air data computer with the
digital voltmeter.

The actual software for the air data computer test required 592
program lines and is far too lengthy to be reproduced in its entirety
here. Instead, the most informative and important sections are
illustrated, and an analysis of the techniques involved in the test
sequence are presented.

Figure 11-9 illustrates one of two test data specifications which
had to be verified. These contain a matrix of six altitudes and seven
airspeeds in which a voltage ratio, generated by the unit under test,
had to be measured and verified to be within certain test limits. One
test matrix was for ac voltage ratios; the other for dc. The ac and
dc matrix represent a total of 66 individual ratio measurements that
had to be made. To enter this data into the computer, a two
dimensional variable was assigned. This was called A(X,Y) for the
ac voltage ratio, and D(XY) for the dc ratio. The program sequence
to store the ac data matrix into computer memory is:

196 IEEE-488 GPIB Manual

240 FOR Y=1 TO 6

250 FOR X=1 TO 7

260 READ A(X,Y)

270 DATA .002,.093,.182,.271,.358,.442,0
280 DATA .031,.136,.238,.336,.435,.527,.573
290 DATA .067,.189,.306,.416,.524,.627,.671
300 DATA .115,.255,.387,.511,.628,.729,.0
310 DATA .173,.335,.484,.616,0,0,0

320 DATA .264,.156,.624,0,0,0,0

330 NEXT X

340 NEXT Y

Additional memory space was allocated for ac and dc ratio
measurement data that would be assimilated and calculated by the
computer. B(X,Y), C(X,Y), E(X,Y), and F(X,Y) variables were
assigned for this purpose.

To simplify program lines, complex strings which were required
to control the relay switcher and digital meter were defined in string
variables such as K1$, M18$, and M2$. For example, three relays in
the switcher, numbers 16, 17, and 18, had to be set in various
combinations to simulate seven different airspeeds. A 0 placed after
the relay number commanded that relay to open; a 1 caused it to
close. String variable K1$ was defined as:

Kis=

R181R161R170R181R161R171R181"

This siring provides ail combinations of a 3-bit binary code which
will cause the airspeed controller to automatically sequence
through the seven airspeeds, as shown in the software illustrated
below. The following program lines provided the automatic se-
quence in which the altitude was set to zero and seven airspeeds

Case Histories and Applications 197

were simulated so that the ac and dc ratios of the air data computer
could be measured:

1230 CLEAR 704

1240 CLEAR

1250 KEY LABEL

1260 DISP "ALTITUDE = 0 FEET";TAB (20);"AC";TAB (27);"DC"
1270 OUTPUT 704 ;"R151R131"

1280 OUTPUT 704 ;"R061"

1290 WAIT 15000

1300 FOR Y=1 TO 61 STEP 12

1310 X =(Y-1)/12+1

1320 OUTPUT 704 ;0$

1330 OUTPUT 704 ;K1$[Y,Y+11]

1340 OUTPUT 703 ;M2$

1350 OUTPUT 704 ; "RO20R030R040R011"

1360 WAIT 5000

1370 ENTER 703 ; V

1380 OUTPUT 704 ; "RO10R021"

1390 WAIT 5000

1400 ENTER 703 ; B(X,1)

1410 C(X,1)=INT (10000*B(X,1)/V+.5)/10000
1420 OUTPUT 703 ;M1$

1430 OUTPUT 704 ;"RO10R020R040R031"

1440 WAIT 2000

1450 ENTER 703 ; V

1460 OUTPUT 704 ;"RO30R041"

1470 WAIT 2000

1480 ENTER 703 ; E(X,1)

1490 F(X,1)=INT (10000*E(X,1)/V+.5/10000
1500 DISP K(X);"KNOTS";TAB (17);E(X,1);TAB (25);F(X,1)
1510 NEXT Y

198 IEEE-488 GPIB Manual

The following is a discussion of the test sequence shown above:
Line 1230 clears the relay switcher so that all relays are opened.

Line 1260 displays the identity of the special function keys which
may be used by the technician to abort a current test and run
another out of the normal sequence of the program.

Line 1260 displays current altitude simulation of the test.

Lines 1270 and 1290 set relays 15, 13, and 6 of the relay switcher
to preset the proper conditions, inciuding zero aititude, for the
test sequence to follow.

Line 1290 allows a 15-second waiting period to allow the
airspeed and/or aititude simulators to settie down in the event
that this test has been selected out of sequence by the technician.

Line 1300 begins a FOR-NEXT loop which will sequence the
test through seven airspeeds, 0 through 375 knots.

Line 1310 converts the variable Y, which changes in steps of 12,
to another variable X, which changes in steps of 1.

Line 1320 uses string variable O$ to clear relays 1, 2, 3, and 4 of
the relay switcher.

Line 1330 selects the desired airspeed of the sequence, using
string K1$ and variable Y to command the relay switcher to
provide the proper 3-bit code to the airspeed power supply.

Line 1340 uses string variable M2$ to direct the voltmeter to
assume ac voltage function at the desired range and reading rate.

Case Histories and Applications 199

Line 1350 causes relays 1, 2, 3, and 4 to connect the input of the
voltmeter to the proper test point and set certain other conditions
in the test set for the voltage ratio test to follow.

Line 1360 provides a 5-second delay to allow the unit under test
to stabilize.

Line 1370 directs the voltmeter to transmit to the computer the
magnitude of the ac driving voltage in the unit under test. This
voltage reading is stored in variable V.

Line 1380 controls relays 1 and 2 and switches the voltmeter to
a second test point in the unit under test.

Line 1380 provides a 5-second waiting period for the circuit to
stabilize.

Line 1400 directs the voltmeter to transmit its reading to the
computer, which stores it in variable B(X,1).

Line 1410 computes the ratio output of the unit under test by
dividing the voltage measurement of line 1400 by the measure-
ment taken in line 1370. Note that this calculation is rounded to
four decimal places and is stored in variable C(X,1).

Line 1420 sets the voltmeter dc voltage function.
Line 1430 causes the relay switcher to connect the voltmeter to
the appropriate test point in the unit under test in preparation for

the dc voltage ratio to follow.

Lines 1440 through 1510 continue the dc measurement sequence
in a similar manner as described for the ac voltage ratio test.

200 IEEE-488 GPIB Manual

The above program is repeated six more times to cover the
remaining six altitude points, making a total of 66 measurements.
In each of those sequences the variables A, B, C, D, E, and F are
assigned the value 2 through 6. For example, line 1400 above
becomes ENTER 703; B(X,2) in the second test sequence. As each
altitude sequence is performed, the computer displays the results
on the CRT so that a technician monitoring the test can abort it if
the results are not satisfactory.

The combinations of airspeed and altitude which are not required
are easily deleted from any of the sequences by an appropriate
selection of the range of variable Y in the FOR-NEXT loop. When
the entire test is completed, the results are printed on the test data
form and any points which are not within spec are flagged. The
equipment automatically returns the unit under test to zero altitude
and airspeed so that the next unit can be checked.

In the test setup described above several variations can be made,
at higher cost, to simplify both the setup and software. For example,
the use of four voltmeters can eliminate the requirement to physi-
cally switch one meter to four test points. Even two voltmeters
couid be used to advantage. Aiso, GPIB programmabie
vacuum/pressure test sets, to simulate each of the required altitudes
and airspeeds, are available. The use of such components in the test
setup could eliminate the custom designed power supply and relay
switcher.

This automated test for an air data computer is able to run,
completely unattended, once the technician connects the equipment
and starts the sequence. About 40 minutes later the test is completed
and the test data form can be reviewed to determine if the unit meets
QC standards. The beauty of such a test setup is that while the test
is being conducted, the technician can devote time to preparing the
next unit for test or to perform other required duties. It doesn’t take
a mathematician to calculate the rapid payback time to cover the
cost of the IEEE-488 instrumentation.

Appendix A

ASCII/ISO and IEEE
Code Chart

2101

202 IEEE-488 GPIB Manuai

7] 1] 2 2 1 1 1 1
B885 g@ Ql 10' 11 Q(ZJ} 01 1 11
BITS NUMBERS
CONTROL SYMBOLS UPPER CASE | LONER CASE
WEF L) g 160 120 140 160
2 092 9| NUL DLE SP 0 @ l P N p
2 211 1628 3230 48143 64,50 80,60 95,79 112
1 CTL21 _LLO41 61 181 127 141 161
0 1] SOH DC1 ! 1 A Q a q
111 17 49)a1 6551 81|51 9771 113
122 142 162
1 R r
sgla2 e6ls2 82|62 98|7 114
123 143 163
1 c S
53 83|63 99|73 185

124

84164 100,74

194 84
125

e u
85|65 18175 117

f v
86i66__ 102/76 118

-
~
h] [—ien =i
D mgux
N <X | = <|C|=H|®”
N
(2]
@
)

127 147 167
1 g w
S7 87|67 103177 11
130 150 170
2 h b ¢
58 88168 124178 120
131 151 171
0 i y
et 895 18573 igl
132 1582 172
! salen J 1gelra 2
SA O0i6A 7A 122
133 153 173
1 {
S8 8168 197178 123
134 154 174 '
2 1 i
5C 9216C 198[7C 124
1 155 175
110 =] = }
131D 29 453D 81140 7715D 93|68 70
16 6 56 76 116 136 156 176
1 0| SO RS . > N A n
%7 14 é; 3| S; 46 ;; 82 ‘1357 78 557 946K 11Q7E 126
tiii) ST | u P e e g |Hen
FDDRESS%S 1F 31|2F' 47 B8314F DISF S5|6F 11U7F 7
Al UNIVERSAL LISTEN TALK SECONDARY R
COMMANDS COMMANDS ADDRESSES ADDRESSES OR m%gsscs

5 PPU| Message Mnemonic
NAK |ASCII/ISO character
) 21| decimal

KEY . octal |2

hex L1

Appendix B

AAD
AH
ATN
C
CAL?
CLS
CME
DAV
DC
DCL
DDE
DnT
noT?
DIO
DLF
DMA
DMC
DT

EMC
EMC?
EOI
ESB

Mnemonics of the
IEEE-488 Interface System

Assign address
Acceptor handshake
Attention

Controller

Calibration query

Clear status

Command error

Data valid

Device clear function
Device clear command
Device-dependent error
Define device trigger
Define device trigger query
Data input/output
Disable listener function
Direct memory access
Define macro

Device trigger

Drivers

Enable macro

Enable macro query
End or identify

Event status bit

203

ESE
ESE?
ESR?
EXE
GET
GMC?
GTL
IDN?
1IFC
IST?
L

LE
LLO
LMC?
LRN?
LU
MAYV
MLA
MSS
MTA
NDAC
NRFD
OPC

Event status enable
Event status enable query
Event status register query
Execution error

Group execute trigger
Get macro contents query
Go to local

Identification query
Interface clear

Individual status query
Listener

Extended listener

Local lockout

Learn macro query

Learn device setup query
Logical unit

Message available bit

My listen address

Master summary status bit
My talk address

No data accepted

Not ready for data
Operation complete

204

oPC?
OPT?
PCB
PMC
PON
PP
PPU
PRE
PRE?

PSC
PSC?
PUD
PUD?
QVE
RCL
RDT
RDT?

REN
RL
RQC
RST
SAY
SnC
SESR
SH
SPD
SPE
SR
SRE
SRE?
SRQ
SRER
STB?
T
TCT
TE
TRG
TST?
UNL
UNT
URQ
WAl

IEEE-488 GPIB Manuai

Operation complete query

Option identification query

Pass control back

Purge macros

Power-on

Parallel poll

Paralle! poll unconfigure

Parallel poll enable register enable

Parallel poll enable register enable
query

Power-on status clear

Power-on status clear query

Protected user data

Protected data user query

Query error

Recall instrument state

Resource description transfer

Resource description transfer
query

Remote enable

Remote/local

Request control

Reset

Save instrument state

Selected device clear

Standard event status register

Source handshake

Serial poll disable

Serial poll enable

Service request function

Service requesi enable

Service request enable query

Service request command

Service request enable register

Read status byte query

Talker

Taka cnnt
1 GRE COhL

Extended talker
Trigger

Self-test query
Unlisten

Untalk

User request
Wait to complete

ol

Appendix C

Glossary of IEEE-488
Terms

Acceptor. Any device on the bus which can receive a message in
command or data mode.

Address. A 7-bit code assigned to a GPIB device which allows it
to be specifically addressed for talking or listening by the controller.

.Addressed commands. Commands which allow the controller to
cause specific actions from selected devices on the bus.

ASCII. American Standard Code for Information Interchange.

Asynchronous. The occurrence of an event which is not
synchronized with the system clock rate.

205

206 IEEE-488 GPIB Manuai

ATE. Automatic test equipment. A group of GPIB instruments,
together with the proper software, is considered an automatic
testing system.

ATN control line. Used to distinguish between command mode
and data mode for messages on the data I/O lines.

Bidirectional bus. A group of lines which can be used by any
device for both receiving and transmitting.

Bit. The smallest part of a binary number which carries intelligible
information.

Bit parallel. A set of concurrent data bits present on the signal
lines of the bus.

Bus. A setof lines which are used in the interface system to carry
messages and data.

Bus commands. ASCII codes which have usefui meaning to
devices on the bus and cause specific actions by them.

Byte. A binary word containing eight bits. In the GPIB system the
eighth bit is often ignored since it is not needed in ASCII coding.

Byte serial. A system of sending a series of 8-bit words in succes-
sion to carry messages and data over the bus.

Command mode. When ATN is true (low), the devices on the bus
may be addressed or unaddressed as listeners or talkers. Bus
commands are also sent in this mode.

Compatibility. A property of GPIB devices which allows them to
communicate with each other in the interface system.

Glossary of IEEE-488 Terms 207

Controller. A GPIBdevice which setsthe ATN line and addresses
all other devices as listeners and/or talkers. There can be only one
active controller on the bus at any given time.

Data mode. When the ATN line is false (high), data or instruc-
tions are transferred between devices on the bus.

DAYV. Data valid control line which is used in the handshake
sequence.

Default. The operating status of a GPIB device upon power-up,
as designated by the manufacturer. To change the default status,
commands from the controller are required.

Device clear. ASCII character DC4 which causes all devices to
return to the default state.

Device-dependent message. An addressed message sent on the
bus which is directed to a specific device or instrument to cause a
desired action.

DIO. Mnemonic which refers to the eight data input/output lines
of the bus.

Direct memory access. A technique by which data may be direct-
ly transferred into the memory bank of a controller or computer
without the need for READ and WRITE software commands as
required in the normal GPIB data transfer sequence.

EOI. End or identify control line of the bus which is used to
indicate the end of a series of data bytes in a message; it is also used
in the parallel poll.

208 |IEEE-488 GPIB Manual

Extended listener. A GPIB instrument which is capable of being
assigned a secondary listen address.

Extended talker. A GPIB instrument which is capable of being
assigned a secondary talk address.

Go to local. ASCII character SOH which will cause all addressed
listeners to return to local control.

GPIB. General purpose instrumentation bus.

Group execute trigger. ASCII character BS which initiates
simultaneous actions by addressed listeners.

Handshake. A sequence of events on the NRFD, DAV, and
NDAC lines which ensures that each data byte is properly received

by the intended recipient.

High state. A logic 1 level which, in the GPIB system, indicates
a not true condition.

HP-IB. Hewlett-Packard Interface Bus.
IEEE. Institute for Electrical and Electronic Engineers.

IFC. Interface clear management line used by the controller to halt
all current operations, unaddress devices, or disable serial poll.

Interface. A boundary between one part of a system and another
through which information is transferred.

Listener. A device on the bus which has been addressed to receive
data or instructions from the controller or other instruments.

Glossary of IEEE-488 Terms 209

Local control. A condition in a GPIB device which permits set-
tings and adjustments by means of its front or rear panel controls.

Local lockout. A GPIB universal command, ASCII character
DCI, which disables the manually operable controls (other than
power on/off) of an instrument.

Low state. A logic 0level which, in the GPIB system, indicates a
true condition.

LU. Mnemonic for logical unit.

MLA. My listen address which, in a given GPIB device, allows it
to be enabled to listen.

Mnemonic. A shortened form or abbreviation of a term or expres-
sion which is used as a system of memory assistance or training.

MTA. My talk address which, in a given GPIB device, allows it
to be enabled to talk.

NDAC. No data accepted control line used in the handshake
sequence.

NRFD. Not ready for data control line used in the handshake
sequence.

Parallel poll. A method by which the controller can simul-
taneously check the status of eight or more instruments on the bus.

Primary commands. A group of multiline messages consisting
of universal commands, addressed commands, and device addres-
ses sent by the controller when ATN is true.

210 IEEE-488 GPIB Manual

Programmable. The capability of an instrument or device which
allows it to be set, adjusted, or controlled, usually by the controller
in a GPIB system.

Query. A message sent from the controller to an instrument to
elicit desired information. A query takes the form of a header
followed by a question mark.

Remote control. A method by which a device is directed to per-
form its intended tasks through instructions from the controller.

REN. Remote enablie line of the bus which aliows instn'lmems to
respond to commands from the controller or another talker.

Secondary commands. A group of multiline messages which
allow extended talkers and extended listeners to respond to 2
address bytes, or parallel poll enable and disable.

Selective device clear. ASCII character EOT which returns ad-
dressed devices to their default state.

Serial poll. A method by which the controller can sequentially
check the status of all instruments on the bus. Each instrument can

send back an 8-bit word to the controller.

Serial poll disable. ASCII character EM which, when sent in
command mode, will cause the bus to go out of serial poll mode.

Source. A talker on the bus.

Signal. A single state or series of logical states on any line of the
bus.

Glossary of IEEE-488 Terms 211

System. An interconnection of two or more GPIB devices which
is designed to perform a designated task.

SRQ. Service request control line which allows a device on the
bus to alert the controller that it requires service.

Talker. A GPIB device which transmits data to the bus, either in
response to an addressed command from the controller or
asynchronously.

Unidirectional bus. A group of lines which is used by an in-
dividual device for one-way (input or output) transfer of informa-

tion.

Unlisten. A command from the controlier which causes a GPIB
listener to ignore messages.

Untalk. A command from the controller which causes a GPIB
talker to cease talking.

Universal command. A command sent by the controller to all
devices on the bus, whether or not they are addressed.

Word. A single or group of bytes treated as a unit of information.

Appendix D

Minimum IEEE-488.2
Device Capabilities

SOURCE HANDSHAKE (SH)

SHO No Copablility

SH1 Full Copobility

ACCEPTOR HANDSHAKE (AH)
AHC No Capabiity

AH1 Full Capobility

TALKER

Tolker (T) Extended Talker (TE)

Basic | Seridl | Tolk Only | Unoddress

Tolker | Poil Mode it WMLA
(TEY NO NO NO NO
T(TEN YES YES YES NO
TETEE YES YES NO NO
T(TE YES NO YES NO
T(TEM YES NO NO NO
T(TE)S YES YES YES YES
T(TE) YES YES NO YES
T(TE)? YES NO YES YES
T(TEX YES NO NO YES

LISTENER
Listener (L) Extended Listsner (LE)

Bosic | Uisten Only| Unaddress

Listener| Mode it MTA
L{LE)O NO NO NO
L{LEN YES YES NO
L(LE;2 YES NO NO
L{LE)3 YES YES YES
LLE)4 YES NO YES

213

214 IEEE-488 GPIB Manual

SERVICE REQUEST (SR)

SRO No Capability

SR1 Full Copobility

REMOTE LOCAL (RL)

RLO No Capability

RL1 Complete Copability

RL2 No Local Lockout
PARALLEL POLL (PP)

PPO No Copability

PP1 Remote Configuration

PP2 Locol Configuration

DEWVICE CLEAR (DC)

DCO No Copobility

DC1 Full Copebility

DC2 Omit Selective Device Clear
DEVICE TRIGGER (DT)

DTO No Capability

DT1 Full Copobility

DRIVER ELECTRONICS (E)

E1 Open Collector (250 KB/sec mox)
E2 Tri Stote (1 MB/sec mox)
CONTROLLER (C)

There ore 29 conirolier ieveis. The more significant ore:
CO No Copability

C1 System Controlier

C2 Send IFC ond Toke Chorge
C3 Send Ren

C4 Respond To SRQ

CS Send Interfoce Messoges, Receive Control, Pass Control, Poss
Control to Self, Porallel Poll, Take Control Synchronously

Appendix E

IEEE-488.2 Common
Commands and Queries

*AAD, Accept Address. Allows the controller to detect all ad-
dress configurable devices on the bus, then assigns an IEEE-488.1
address to each.

*CAL?, Calibration. Tells a device to perform an internal self-
calibration, which must be accomplished without any local user
interaction. The device will respond to this query with a number in
the range of -32767 to 32767. A value of 0 in the response indicates
that the calibration was carried out successfully.

*CLS, Clear Status. Clears the status register and status data
structures which are summarized in the status byte. It also clears all
status-related queues except the output queue.

*DDT, Define Device Trigger. Stores one or more device com-
mands which are to be executed when the IEEE-488.1 GET mes-
sage or 488.2 TRG command is sent.

216 IEEE-488 GPIB Manual

*DDT?, Define Device Trigger. Allows the usertoread the com-
mand sequence which will be followed when a device receives the
GET or *TRG command.

*DLF, Disable Listener Function. Tells a device to stop listen-
ing on the bus in preparation to being configured with the *AAD
command.

*DMC, Define Macro. Allows the user to assign a series of com-
mands which the device is to execute upon receipt of the macro
label. The macro is defined by sending DMC followed by a string
that designates the label. Following the label, the user sends an
arbitary block program data element which defines the macro.

*EMC, Enable Macro. Enables and disables macros, without af-
fecting macro definitions. The command is followed by a number
in the range of -32767 to 32767. A zero disables all macros; a
number other than zero enables them. Macros may be disabled
when it is desired to send a device-dependent command which is
the same as the macro label.

*EMC?, Enable Macro. Permits the user to determine if macros
are enabled in a device. The unit will respond with a value of 1
(ASCII 49 decimal) or 0 (ASCII 48 decimal) to indicate if the
macros are enabled or disabled, respectively.

*ESE, Standard Event Status Enable. This command, fol-
lowed by a number in the range of 0 to 255, will set the Standard
Event Status Enable register bits. The binary equivalent of the
number represents the values of the individual bits set into the SESE
register.

*ESE?, Event Status Enable, Enables the user to read the con-
tents of the Standard Event Status Enable register. The device will

|[EEE-488.2 Common Commands and Queries 217

return a number in the range of 0 to 255, whose binary equivalent
represents the bits of the SESE register.

*ESR?, Event Status Register. Enables the user to read the con-
tents of the Standard Event Status register, which is automatically
cleared. The device responds with an integer in the range of 0 to
255. The binary equivalent of the integer represents the bits of the
SESR.

*GMC?, Get Macro Contents. This query, followed by the label
string of the macro, allows the user to obtain the contents of the
macro in a device.

*IDN?, Identification. Causes a device to respond with its iden-
tity. The returned data is organized into four fields, separated by
commas. The unit must respond with its manufacturer and model
number and may also report its serial number and options. If the
latter information is not available, the device must return an ASCII
0 (decimal 48) for each.

*IST?, Individual Status. Permits the user to read the current
state of the ist local message of a device. It permits the user to
determine what the device will send on a parallel poll, without
performing the poll.

*LMC?, Learn Macro. Tells a device to respond with the labels
of all currently defined macros, whether or not they are enabled. If
there is more than one macro label to report, they will be separated
by a comma.

*LRN?, Learn Device Setup. Tells a device to send a response
that contains all the neceesary commands to set the device to its
presentstate. This information is used by the controller to learn how

218 IEEE-488 GFIB Manuai

to restore at a later time an instrument that has been manually set
up.

*0QPC, Operation Complete. Causes a device to set bit 0 in the
Standard Event Status register when it completes all pending opera-
tions.

*QPC?, Operation Complete. Causes a device to place an
ASCII 1 (decimal 49) in its output queue when it completes all
pending operations.

*0QPT?, Option Identification. Allows the user to determine the
identity of any reportable device options. The device response must
not be longer than 255 characters and may contain any number of
fields separated by commas. The format is left up to the manufac-
turer of the equipment, with missing options identified by an ASCII
0 (decimal 48). Fields describing the options may contain any
ASCII characters except commas, semicolons, control characters,
and DEL.

*PCB, Pass Control Back. Instructs a potential bus controller
where to pass control back to. The current controller can tell another
device where to send the 488.1 TCT command when it is ready to
relinquish control of the bus. The TCT command is followed by a
number which represents the address of the next controller of the
bus.

*PMC, Purge Macros. Removes all macro labels and sequences
from a device’s memory.

*PRE, Parallel Poll Enable Register Enable. This command,
followed by a number in the range of 0 to 655335, sets the bits in the
Parallel Poll Enable register. The binary equivalent of the number
represents the bits in the PPER.

IEEE-488.2 Common Commands and Queries 219

*PRE?, Parallel Poll Enable Register Enable. Allows the user
to read the contents of the Parallel Poll Enable register. The device
responds with an integer in the range of 0 to 65536, whose binary
equivalent represents the bits of the PPER.

*PSC, Power-on Status Clear. This command, followed by a
number in the range of -32767 to 32767, is used to control the
power-on clearing of the Service Request Enable register, the
Standard Event Status Enable register, and the Parallel Poll Enable
register. Sending a number other than zero sets the power-on clear
flag true, causing the registers to be cleared at power-on and
preventing the device from requesting service.

*PSC?, Power-on Status Clear. Enables the user to read the
status of the power-on clear flag. The device returns a 0 or 1,
indicating that the flag is false or true, respectively.

*PUD, Protected Data User. Enables the user to store in a
device’s memory up to 63 bytes of data, such as calibration date,
usage time, or any other information unique to the device. The data
is protected by some means such as a hidden switch so that it can
only be written when the protection mechanism is disabled.

*PUD?, Protected User Data. Reads the data stored by the
*PUD command, allowing the user to access this information.

*RCL, Recall Command. This command restores the state of a
device to a status previously stored in the device’s memory. If the
device has more than one memory register, the command must be
followed by a number to specify which register is to be used. The
functions restored by the *RCL command are the same as those
affected by the *RST command.

220 IEEE-488 GPIB Manual

*RDT, Resource Description Transfer. Allows the user to store
a capability description in a device’s memory. The data is protected
by some means such as a hidden switch so that it can only be written
when the protective mechanism is disabled.

*RDT?, Resouice Description Transfer. Allows the user to ac-
cess the Resource Description stored by the *RDT command.

*RST, Reset. Sets device-dependent functions to a known state,
sets the Device Defined Trigger to a device defined state, disables
macros, purges all *OPC commands and queries, and aborts all
pending operations. The output queue, Service Request Enable
register, Standard Event Status Enable register, and power-on flag
are not affected.

*SAV, Save. Allows the user to store the present state of a device
in local memory. If the device has more than one memory location,
the command must be followed by a number to designate the
storage register to be used.

*SRE, Service Request Enable. This command, followed by a
number, sets the Service Request Enable register which determines
what bits in the status byte will cause a service request from the
device. The binary equivalent of the number represents the values
of the individual bits of the SRER.

*SRE?, Service Request Enable, Enables the user to read the
contents of the Service Request Enable register. The device returns
a number in the range of 0 to 63 or 128 to 191, since bit 6 (RSQ)
cannot be set. The binary equivalent of the number represents the
value of the bits of the SRER.

*STB?, Status Byte. Reads the status byte containing the master
summary status (MSS) bit. The device responds with an integer in

|[EEE-488.2 Common Commands and Queries 221

the range of 0 to 255, whose binary equivalent represents the value
of the bits of the status byte.

*TRG, Trigger. This I[EEE-488.2 command performs the same
function as the Group Execute Trigger command defined by IEEE-
488.1.

*TST?, Self-Test. Tells a device to perform an internal self-test
and report back to the controller if any errors are detected. The
response sent by the device will be a number in the range of -32767
to 32767. A zero in the response indicates that no errors were
detected.

*WALI, Wait to Continue. Causes a device to wait until all pre-
vious commands and queries are completed before executing any
which follow the *WAI command.

Appendix F

IEEE-488.2 Floating-Point
Format

The IEEE-488.2 document recommends that IEEE Std. 754-1985
be used for representing floating-point numbers in the GPIB sys-
tem. The specified format requires that each number be represented
by three fields, Sign, Exponent, and Fraction. The size of the fields
depends upon the desired precision of the number. For single and
double precision numbers the size of the fields are shown in
Figure A-F1.

I

224 IEEE-488 GPIB Manual

SINGLE PRECISION 32 BIT NUMBER DOUBLE PRECISION 64 BiT NUMBER

Sign field width 1 bit Sign field width 1 bit

Exponent field width 8 bits Exponent field width 11 bits

Fraction fleld width 23 bits Froction field width 52 bits
Figure A-F1

The following formulas may be used to determine the value of a
number x represented in IEEE 754 floating-point format. Let e
represent the exponent, s the sign bit, and f the fraction. A 32-bit
single-precision number is determined by

If e

=255o0ond f 0 then x is Not a_Number (NaN)
If e =255 and f = 0 then x = —1s (oo
If 0 < e < 255 then x = —1=$2e 127y1 = 1)
fe=0aond f# 0 then x = 2—125)0 f)
ife=0ond f=0 then x = —~1%(0) (zero)
Figure A-F2

A 64-bit double-precision number is determined by

if e = 2047 ond f # 0 then x is Not o Number (NoN)
If e = 1047 ond f = 0 then x = —1%(0

If 0 < e < 2047 then x = —15(2 -1023)(1 + f)
ife=0aond f# 0 then x = —1%(2-1022)(0 + f)

Ife=00and f=10 then x = —1%(0) (zero)

Figure A-F3

Figure A-F4 is a representation of the relationship of the bits in
a single-precision number, shown as a 4-byte transmission.

Figure A-FS is a representation of the relationship of the bits in
a double-precision number, shown as an 8-bit transmission.

IEEE-488.2 Floating-Point Format 225

8 7 s

5
S EmsE E
F

Eisb F msb F

4
E
F

F F F F F

F

F F F F

Where: E o is the

3
E
F
F
F

Eisb is the |

F msb is the

2

E E First byte sent

F F Second byte sent
F

F Third byte sent

-

Flsp Fourth byte sent

most significant bit of the exponent.

east significant bit of the exponent.

most significont bit of the fraction.

Fisb is the least significont bit of the fraction.
S is the sign bit.

E is an exponent bit.

F is o froction bit.

Figure A-F4

Note that the numbers illustrated above will be sent as a length
arbitrary response data and received as an arbitrary block program

data.

B 7 & 5 4 3 2 1

S EmpE E E E E E First byte sent

E E E Elsb Frmsp F F F Second byte sent

F F F F F F F F Third through seventh

byte send
F F F F F F F Fip Lost byte sent
Where: E o is the most significant bit of the exponent.

Eisb is the least significant bit of the exponent.
F msb is the most significant bit of the fraction.
Fisb is the leost significant bit of the fraction.
S is the sign bit.
£ is an exponent bit.
F is o fraction bit.

Figure A-F5

Appendix G

Electrical Specifications
of the IEEE-488
Interface System

+5V
Driver: Output leckoge current (open
collector driver) +0.25 mA max
33K DRIVER ot Vo = 525V
Output leakage current
(three-stote driver) + 40 uA
p max ot Vo = 2.4V

RECEIVER
6.2K l
BUS Receiver: Input current —1.6mA max
— ot Vo = +0.4V

Input leokage current
+40 uA mox ot Vo = +2.4V
+1.0 mA mox ot Vo = +5.25v

227

Appendix H

Mechanical Specifications
of the IEEE-488
Interface System

The IEEE/ANSI connector and cabling specifications of the IEEE-
488 Interface System permit interconnecting all devices together in
a star or linear configuration. The IEEE-488/ANSI connector is a
24-pin ribbon-type connector, and the IEC 625.1 connector is a
25-pin type connector (MIL-C-24308). The pin assignments of the
IEEE/ANSI connector are shown in Figure A-H1.

229

230 IEEE-488 GPIB Manual

SHELD ~w——— CONMECT TO

’ AN E£ARTH GROUND

P/0 TMSTED PAR WM 11
SHOULD BE GROUNOED P/O TWSTED PAR WTH 10
TERMINATION OF P/O TWSTED PAR WTH 9

NEAR
OTHER WIRE OF TMSTED PAR /0 TWSTED PAR WM 8
B/0 TWISTED PAR WTH 7

P/ TwETED DAN mTH &

ROV

NDAC

sav

€or

(=)

mo8 one
007 003
08 Dio2
oS o1

THE HA=10 LOGIC LEVELS

ARE TIL COMPATIOLE, La.

TRUE STATE < .08 ¥ OC

FALSE STATE > +20 ¥ OC

FOR A POWER SOURCE.

THAT DOES NOT EXCEED

+3.25 ¥V OC AND REFERENCED

TO LOGIC GROUND.

\©/ TYPE 57 VICRORIBOON CONECTOR
Figure A-H1

Specifications for the IEEE/ANSI connector are:

Voltage rating: 200 Vdc

Current rating: 5 amperes

Endurance: 1000 insertions

Temperature and humidity: MIL STD 202E

Specifications for the IEC 625.1 connector are:

Voltage rating: 60 Vdc

Current rating: 5 amperes

Endurance: 1000 insertions

Temperature and humidity: IEC publication 68 for climatic
category 25/070/21

For the IEEE/ANSI connector, metric threads (ISO M3.9 x 0.6
type) are specified, but some existing assemblies use English

Mechanical Specifications 231

threads. Typically, metric threads are colored black; English are
colored silver. No attempt should be made to mate English and
metric threads together. To do so will damage the hardware.

Appendix I

Sample GPIB
Programming Sequences
Using HP-BASIC

SERIAL POLL

The following program is an example of the use of the serial poll.
In this sequence a Fluke model 8840A digital voltmeter (GPIB
address 15) is continuously polled by the computer to determine if
the instrument is experiencing an overrange condition.

7?2

234 IEEE-488 GPIB Manual

10 CLEAR

20 OUTPUT 715 :"N1P1"

30 LOCAL 715

40 S=SPOLL (715)

50 IF BIT (S,0)=1 THEN 70
60 GOTO 40

70 DISP "OVERRANGE"

80 GOTO 10

Program A-I1 Serial poll.

Line 20 sets the SRQ mask of the digital meter. P1 programs the
8840A to make a service request on the condition specified by
the integer following the N command. In this case, the integer 1
causes the instrument to generate an SRQ when in an overrange
condition. Other integers following the N command could be
used to set certain other operating conditions, as specified by the
manufacturer of the instrument.

Line 30 sets the DVM to local operation, allowing use of the front
panel controls by the user.

Line 40 causes the computer to transmit a serial poll, addressed
specifically to the DVM, to determine if an SRQ has been
asserted by that instrument.

Line 50 checks the serial poll register of the DVM to determine
if bit 1, defined as bit 0 in the HP85B computer, has been
asserted. If this bit is at logic 1 level, the program branches to
line 70. Otherwise the program returns to line 40 to transmit
another serial poll.

Sample GPIB Programming Sequences 235

100 ON TIMEOUT 7 GOTO 170
110 SET TIMEOUT 7;1200

120 OUTPUT 715 ;"R1F1S0T4"
130 TRIGGER 715

140 ENTER 715 ; A

150 DISP A

160 GOTO 130

170 DISP "INTERFACE FAILURE"
180 FOR I=0 TO 6

190 STATUS 7,I ; S(I)

200 DISP "STATUS BYTE #";I;" = ";S(I)
210 NEXT I
220 RESET 7

230 GOTO 130

Program A-I12 Time-out.

If the instrument has asserted the overrange bit, line 70 of the
program causes the computer CRT to display the word OVER-
RANGE, and the process is repeated.

TIME-OUT

Program A-I2 illustrates the use of the computer time-out feature,
which is a very useful function that can be used to avoid the problem
of interface bus hang-ups when a command or data transfer se-
quence is not properly completed. In this example, an interface
problem may be simulated by turning off the addressed device, a
Fluke digital voltmeter set to GPIB address 15.

236 IEEE-488 GPIB Manual

The following explains pertinent steps in Program A-12:

Line 100 specifies the program line for a subroutine which the
computer is to follow in the event the time-out function is
exercised.

Line 110 sets the time limit for a handshake sequence to be
completed; in this case it is specified as 1200 milliseconds, or
1.2 seconds.

Lines 120 programs the voltmeter to the 200 mv-range, dc volts,
slow reading rate, and external trigger mode.

Line 130 commands the voltmeter to take a voltage reading.

Line 140 directs the voltmeter to transmit the reading to the
controller, which stores it into variable A.

Line 150 displays the voltage reading on the computer CRT. The
sequence is repeated as long as the time to complete any message
or data transfer does not exceed 1.2 seconds.

If a bus hang-up is simulated by turning off power to the
voltmeter so that it cannot complete the handshake sequence, the
program branches to line 170, which displays INTERFACE
FAILURE on the computer CRT.

A FOR-NEXT loop is initiated which causes the computer to
store a set of interface status bytes in variable S(I). The CRT then
displays the results of the status bytes, which are defined by the
manufacturer of the controller. A typical display would look like
this:

INTERFACE FAILURE
STATUS BYTE # 0 =1

Sample GPIB Programming Sequences 237

STATUS BYTE # 1 = 0
STATUS BYTE # 2 = 66
STATUS BYTE # 3 = 0
STATUS BYTE # 4 = 53
STATUS BYTE # 5 = 226
STATUS BYTE # 6 = 0

The HP IEEE-488 interface instruction manual provides infor-
mation concerning the cause of failure of the system.

Line 220 resets the bus so that a new message or data transmis-
sion may take place. If the problem causing the hang-up has not
been corrected, the sequence of lines 170 through 220 is repeated.

In an actual program, the software engineer would provide the
desired action that the controller is to follow when the branch
statement of line 100 is exercised. The subroutine must cause the
desired action, either by manual or automatic means, to allow the
automatic test sequence to proceed.

COMBINATION SERIAL POLL AND TIME-OUT

It is possible to use the two sequences described above in a novel
program which automatically determines the address of every
device on the bus. The following program also makes use of a
command which enables the sequence to continue in the event of a
programming error. In this case the error occurs when the controller
attempts to conduct a serial poll on itself.

The following explains pertinent steps in Program A-13:

Line 100 sets the time-out limit to 500 milliseconds.

Line 110 directs the program sequence to a subroutine at line 210
in the event of a program error.

238 IEEE-488 GPIB Manual

100 SET TIMEOUT 7;500

110 ON ERROR GOTO 210

120 ON TIMEOUT GOTO 180

130 FOR I=0 TO 31

140 X=SPOLL (700+I)

150 DISP "DEVICE ADDRESS # ";I;" PRESENT"
160 NEXT I

170 END

180 ABORTIO 7

190 DISP "DEVICE ADDRESS # ";I;"NOT PRESENT"
200 GOTO 160

210 OFF ERROR

220 GOTO 160

Program A-I3 Combination serial poll and time-out.

Line 120 directs the program sequence to a subroutine at line 180
in the event of a bus hang-up.

Lines 130 through 160 form a FOR-NEXT loop which is used
to query every possible device address for a response to the serial
poll. The decimal value of the status byte returned, if any, is
stored in variable X which, in this program, is not used for any
purpose. If a status byte is received, the computer displays the
variable T and indicates that the device is present and active on
the bus.

If a device at any of the addresses queried does not exist, the
branch statement of line 120 is invoked, since no reply is forthcom-
ing within the allotted time of 500 milliseconds. This causes the

Sample GPIB Programming Sequences 239

computer to display the address of all devices which are not present,
and it indicates this fact.

Since this program will query all GPIB addresses from 0 to 31,
the controller itself will be polled because it has a factory- set GPIB
address of 21. The attempt of the controller to perform a serial poll
on itself will normally cause a program error and stop the sequence.
This problem has been eliminated, however, by taking advantage
of the ON ERROR statement which allows the sequence to branch
to a subroutine. The program sequence then returns to the next
GBIB address to be polled. Note that the computer CRT will
indicate the presence or absence of all devices except address 21,
which is the controller.

MANUAL ACTIVATION OF SRQ

Some instruments or devices feature a front panel pushbutton or
switch which enables the technician to manually request service
from the controller. This can be a very useful operating control as
shown in the following program, which permits a series of meter
readings to be displayed and stored on the computer CRT. The
DVM for this example is the Fluke model 8840A which is set to a
GPIB address of 15.
The following explains pertinent steps in Program A-14:

Lines 100 to 130 clear the computer screen, interface, and set the
digital voltmeter to default functions.

Line 130 sets the conditions under which the SRQ line will be
asserted by the meter. N4 provides SRQ on activation of the front
panel SRQ pushbutton, P1 is the “put” command to set the SRQ

240

100
110
120
130
140
150
160
300
500
510
520
530
540
550
560
570

IEEE-488 GPIB Manual

CLEAR

CLEAR 7

CLEAR 715

OUTPUT 715 ;"N4P1Y1l"
LOCAL 715

ON INTR 7 GOTO 500
ENABLE INTR 7;8
GOTO 300

CONTROL 7,1 ; 0
X=SPOLL (715)

IF X<> 0 THEN 530 ELSE 140
ENTER 715 ; A,A$
DISP A,A$

ENABLE INTR 7;0
GOTO 140

END

Program A-I4 Manual activation of SRQ.

mask, and Y1 enables the output suffix (VDC) to be transmitted
with the numeric data.

Line 140 sets the meter to local front panel control.

Line 150 commands the controller to branch to line 500 in the
event of an SRQ interruption.

Line 160 enables the interface for an interrupt when SRQ is true.

Sample GPIB Programming Sequences 241

The program then sequences to line 300, which simulates con-
troller activity with other matters. The program will remain at
line 300 until SRQ is asserted by the user.

Lines 500 through 560 form a subroutine which is exercised at
the activation of the SRQ front panel pushbutton. The DVM is
polled by the controller, and if the serial poll register is not zero,
a voltage reading is stored in variable A and the suffix VDC is
stored in AS.

Line 540 displays the results on the computer CRT and the
program cycles back to line 140 to repeat the sequence and wait
for the next SRQ.

INSTRUMENT INTERROGATION

Many instrument manufacturers have provided a method of inter-
rogating an instrument to determine specific information concern-
ing its status or capabilities. For example, the Wavetek model 278
function generator, when equipped with a memory backup battery,
is able to store up to 100 complex settings which can be recalled at
any time. This feature is very useful since it eliminates the necessity
of setting each parameter of the instrument every time it is powered
up. This function generator has been implemented with a talk
function which allows a GPIB controller to determine the precise
settings which have been stored in the instrument’s memory.

Program A-I5 will determine the number of settings which the
generator is capable of storing and will display the complete com-
mand string of each setting that is stored. The GPIB address of the
function generator is 09.

242 IEEE-488 GPIB Manual

100 CLEAR

110 DIM S$[100],T$[100],2$[100]
120 y$="y"

130 OUTPUT 709 ;"XT8"
140 ENTER 709 ; SS$
150 DISP S$

160 FOR %=0 TO 99

170 2$=VAL$ (2)

180 T$=Y$&Z$

190 OUTPUT 709 ;T$
200 OUTPUT 709 ;"I"
210 OUTPUT 709 ;"XT3"
220 ENTER 709 ; S$
230 DISP Z;S$

240 NEXT 2

250 END

Program A-IS Instrument interrogation.

The following explains the pertinent steps in Program A-I5.

Line 110 dimensions three string variables which will be used to
store alphanumeric data provided by the generator.

Line 130 contains the command which instructs the generator to
respond with the number of stored settings when it is addressed
to talk.

Line 140 directs the generator to transmit this information, and
the computer stores it in string variable S$ which is displayed on
the computer CRT.

Sample GPIB Programming Sequences 243

Lines 160 through 240 form a FOR-NEXT loop which will recall
and interrogate the generator for its stored settings 100 times.

Line 170 defines string Z$ which is the numeric value of vari-
able Z.

Line 180 uses the concatenation operation of the computer to
construct the device dependent command from lines 120 and
170.

Lines 190 and 200 command the generator to recall and execute
the stored setting for the current value of Z.

Line 210 instructs the generator to respond, when addressed to
talk, with the current setting as defined in line 190.

Line 220 commands the generator to transmit this information
to the computer, which stores it in string S$. This is displayed on
the screen.

This program will execute in just a few seconds, and the generator
display will change too fast for the human eye to follow. If desired,
a wait statement may be added after line 200 to allow the generator
display to remain stable for the ongoing process to be seen.

DATA TRANSFER USING FAST HANDSHAKE

The following program makes use of the fast handshake capability
of the HP 85B computer to transfer large amounts of data that may
be assimilated by a GPIB instrument. In this example, the extremely
fast measurement capability of a Fluke model 8840A digital
voltmeter (100 readings per second) is transferred and stored by the
computer using the fast handshake (FHS) data transfer.

244 IEEE-488 GPIB Manual

100 CLEAR

110 CLEAR 715

120 OUTPUT 715 ;"F1R3S2"

130 ENTER 715 ‘

140 DIM A$[1308]

150 IOBUFFER A$

160 TRANSFER 715 TO A$ FHS ; COUNT 1300
170 FOR X=1 TO 1300 STEP 13
180 DISP (X-1)/13+1;A$[X,X+11]
190 NEXT X

200 END

Program A-I6 Data transfer using fast handshake.

Lines 100 and 110 clear the computer CRT and sets the digital
voltmeter to default functions.

Line 120 sets the DVM to the 20 volt DC range at a rate of 100
readings per second.

Line 130 addresses the meter to talk.

Line 140 allocates sufficient space in the computer’s memory to
store the data which is to be transferred. Eight characters of the
string variable A$ are reserved for control of HP85B buffer
activity and 13 characters are required for each data byte of the
DVM.

Line 150 specifies that string variable A4 will be transferred to
the 1/0 buffer.

Sample GPIB Programming Sequences 245

Line 160 is the fast handshake command which directs the DVM
to transfer 100 readings into string variable A$. Note that each
data byte of the meter contains 13 characters and the transfer
continues until a total of 1300 characters have been transferred.
During the fast handshake sequence, the computer suspends
program execution and dedicates itself to the task of moving all
the characters from the interface into the buffer. Once the fast
handshake transfer begins no interrupts are allowed, and the
computer will see the transfer through to completion.

The data transfer has now taken place, and 100 voltage readings
are stored in string variable A$. The total amount of elapsed time
is about 1 second. Lines 170 through 190 form a FOR-NEXT loop
which can be used to display the stored readings on the computer
CRT, each preceded by a number from 1 to 100.

Bibliography

Byers, TI, Electronic Test Equipment, Intertext Publica-
tions/McGraw-Hill, New York, 1987.

Hughes, W. and Luehman, K., “PCIB: A Low-Cost,
Flexible Instrument Control for Personal Computers,”
Hewlett-Packard Journal, May, 1986.

Kane, G., Harper, S., and Ushijima, D., The HP-IL System:
An Introductory Guide to the Hewlett-Packard Interface
Loop, Osborn/McGraw Hill, New York, 1982.

Tilden, M. “Tektronix Codes and Formats for GPIB Instru-
ments,” Tektronix, 1982.

Tilden, M. “Programming Techniques Speed IEEE-488
System Execution,” EDN, October 27, 1983.

“Tutorial Description of the Hewlett-Packard Interface
Bus,” Hewlett-Packard publication 5952-0156 revised
November 1987.

Y47

Index

addressed commands, 25-26
American National Standards
Institute (ANSI), 3
American Standard Code for
Information Interchange
(ASCID), 5
application of IEEE-488 bus
system
aircraft engine rpm
instrument testing, 187-193
air data computer test, 193
airspeed capsule
displacement, 162-175
servo altimeter rate
measurement, 175-187
automatic test equipment
(ATE), 1,51

BASIC, 2

Behlman Engineering, 73
binary block argument, 157
bus, 2

bus, history of, 2-3

bytes, 14

Codes and Formats standard,
105-106

command error bit (CME), 46

commands, 19

249

command structures, 95
common command set, 3640
auto-configure, 38-39
controller, 38
device trigger, 38
internal operations, 37
macros, 39
parallel poll, 38
status and event, 37
stored settings, 39-40
synchronization, 37-38
system data, 36
communications format, 83-84
compatibilities, 116-118
controller, 2, 7
controller time-out period,
96-97
conventions, 111-114
custom bus interface IC,
131-132

daisy chain, 8

data buffers, 57

device-dependent command, 18

device-dependent error (DDE)
bit, 46

device-dependent messages
layer, 6

250

device-dependent message
structure, 109-111

device-dependent message
units, 19-20

device message protocols, 35

Device Trigger command, 118

digital voltmeters, 62-65

digitizing time, 153

direct memory access (DMA)

channel, 156

event status bit (ESB), 43
execution error bit (EXE), 46
expanders and extenders, 51-53
external boxes, 50

Fiskars power sources, 73, 75
Fluke Mfg. Co., 63
Fluke 1722A controller, 89-91
forgiving listening, 34-35
GPIB addressing, 10-14
GPIB communications, 14-16
GPIB devices and functions
communications format,
83-84
digital voltmeters, 62-65
interface functions and
subsets, 77-80
oscilloscopes, 66
programmable ac power
supplies, 73-75
programmable dc power
supplies, 69-73
programmable requirements,
80-83
signal generators, 66-69

IEEE-488 GPIB Manual

universal counters, 69
GPIB hardware

data buffers, 57

expanders and extenders,
51-53

GPIB-to-RS-232
converters, 53-55

TEEE-488 modems, 50-51

IEEE-488-to-digital I/O

interface, 57-58
parallel IEEE-488
converter, 55-57
PC-to-GPIB interfaces,
49-50
GPIB interface system, 7-10
GPIB instruments,compability
between, 106-108
GPIB system performance,
overview
data acquisition, 153-155
data processing, 158-159
data transfer, 155-158
human interface, 159-160
instrument setup time,
151-153
overview, 149-151
GPIB-to-RS-232 converters,
53-55
group execute trigger (GET), 46

handshake function, 16-18
Data valid (DV), 17
No data accepted
(NDAQ), 17
Not ready for data
(NRFD), 16

Hewlett-Packard BASIC, 86
Hewlett-Packard Co., 2-3, 49,
51,53,69, 83
Hewlett-Packard interface bus
(HP-IB), 3
Hewlett-Packard interface bus
overview, 119-121
Hewlett-Packard interface loop
command group messages,
145-146
features, 137-139
interface functions, 141-145
message structure, 139-141
message table, 146-147
overview, 136-137
Hewlett-Packard Language
(HPL), 86-87
Hewlett-Packard PC interface
bus
custom bus interface IC,
131-132
overview, 119-121
parallel communications
channel, 123-127
serial communications
channel, 127-131
system description, 122-123
system objectives, 121-122
using PCIB, 132
HP-IL device-control interface
functions, 142-143
device clear (DC), 143
power-down, 143
remote local (RL), 143
HP-IL, primary interface
functions, 141-142

Index 251

controller, 142
driver, 141
listener, 141-142
receiver, 141
source handshake, 142
talker, 142

human interface, 108-109

ICS Electronics Corp., 56, 75
IEEE-488 interface bus,
programming of
command structures, 95
comparisons between HP,
Tektronix and Fluke,
92-95
Fluke 1722A controller,
89-91
4041 BASIC (Tektronix),
88-89
Hewlett-Packard BASIC,
86
Hewlett-Packard Language
(HPL), 86-88
overview, 85-86
primary address, 99-102
programming syntax of
1722A,91-92
secondary address,
102-103
service request interrupts,
97-99
time-out period, 96-97
IEEE-488 modems, 50-51
IEEE-488 protocol
addressed commands,
25-26

252 IEEE-488 GPIB Manual

device-dependent message

units, 19-20

interface functions, 20-21
interface management lines,

21-23

message termination, 28-29

polling, 26-28

universal commands, 24-25

IEEE-4388-i0-Digital I/G
interface, 57-58
IEEE-488.2, 3-6
IEEE-488.2 standard, 4, 31-48
common command set,
3640

device message protocols,

35-36
interface capabilities, 32
overview, 31-32
parallel poll, 47-48
status reporting, 4047
syntax and data formats,
33-35
individual status local message
(ISI), 47
interface capabilities, 32
interface functions, 20-21
interface functions and subsets,
77-80
interface management lines,
21-23
interface systems, 6
International Electrotechnical
Commission (IEC), 3
International Standards
Organization (ISO) code, 15

Keyence Corp. of America, 163

Kollsman Instrument Co.,
186-187

Lambda Electronics, 69

listen address, 12

listeners, 7

master summary status bit, 43

Mensor Corp., 165

message availabie bit (MAYV),
42-43

message termination, 28-29

mnemonic, 20

multiple addresses, 14

National Instruments, 53
negative logic system, 14

oscilloscopes, 66

parallel communications
channel, 123-127

parallel IEEE-488 converter,
55-57

parallel poll, 47-48

Parallel Poll Enable Register
coomand (*PRE), 47

Parallel Poll Enable Register
Query (*PRE?), 48

parallel polling, 27-28

PCIB, use of, 132-134

PC To GPIB interfaces, 49-50

Personal Computer interface
Bus (PCIB), 119

plug-in boards, 50

pod protocol mode, 131

polling, 26-28

power on bit (PON), 46

precise talking, 34-35

primary addresses, 10, 99-102

program comparisons, 92-95

prgrammable dc power
supplies, 69-73

programming overview, 85-86

programming requirements,
80-83

programming syntax, Fluke
1722A,91-92

queries, 115-116
query error bit (QYE), 45

radio frequency interference
(RFI), 126

Recall Status Query (RSQ) bit,
40

request control bit (RQC), 45

secondary address, 12, 102-103

Seitz Technical Products, 58,
165

serial communications channel,
127-131 '

serial polling, 26

Service Request Enable register
(SRER), 43

service request interrupts, 97-99

settling time, 151

signal generators, 66-69

SRQ status bytes, 97

Standard Event Status register
(SESR), 4344, 46

Status Byte Query, 40

status bytes, 115

status reporting, 40-47

Index 253

string, 18

syntax and data formats, 33-35
system description, 122-123
system objective, 121-122

talk address, 12, 100
talkers, 7
Tektronix codes and formats
compatibilities, 116-118
compatibility between
GPIB instruments,
106-108
conventions, 111-114
device-dependent message
structure, 109-111
human interface, 108-109
queries, 115-116
status bytes, 115
Tektronix 4041 BASIC, 88-89
trigger dalay, 153
two-wire handshake system, 125

universal commands, 24-25
universal counters, 69
Unlisted command, 25
Untalk command, 25

user request bit (URQ), 46

Wavetek, 66-68
Wavetest, 82

Trademarks

Wavetest is a trademark of Wavetek, Inc.

Tektronix is a trademark of Tektronix, Inc.

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255

